79.74/21.36 WORST_CASE(NON_POLY, ?) 79.74/21.37 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 79.74/21.37 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 79.74/21.37 79.74/21.37 79.74/21.37 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 79.74/21.37 79.74/21.37 (0) CpxTRS 79.74/21.37 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 79.74/21.37 (2) TRS for Loop Detection 79.74/21.37 (3) DecreasingLoopProof [LOWER BOUND(ID), 59 ms] 79.74/21.37 (4) BEST 79.74/21.37 (5) proven lower bound 79.74/21.37 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 79.74/21.37 (7) BOUNDS(n^1, INF) 79.74/21.37 (8) TRS for Loop Detection 79.74/21.37 (9) InfiniteLowerBoundProof [FINISHED, 13.7 s] 79.74/21.37 (10) BOUNDS(INF, INF) 79.74/21.37 79.74/21.37 79.74/21.37 ---------------------------------------- 79.74/21.37 79.74/21.37 (0) 79.74/21.37 Obligation: 79.74/21.37 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 79.74/21.37 79.74/21.37 79.74/21.37 The TRS R consists of the following rules: 79.74/21.37 79.74/21.37 zeros -> cons(0, n__zeros) 79.74/21.37 U11(tt, L) -> U12(tt, activate(L)) 79.74/21.37 U12(tt, L) -> s(length(activate(L))) 79.74/21.37 U21(tt, IL, M, N) -> U22(tt, activate(IL), activate(M), activate(N)) 79.74/21.37 U22(tt, IL, M, N) -> U23(tt, activate(IL), activate(M), activate(N)) 79.74/21.37 U23(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) 79.74/21.37 length(nil) -> 0 79.74/21.37 length(cons(N, L)) -> U11(tt, activate(L)) 79.74/21.37 take(0, IL) -> nil 79.74/21.37 take(s(M), cons(N, IL)) -> U21(tt, activate(IL), M, N) 79.74/21.37 zeros -> n__zeros 79.74/21.37 take(X1, X2) -> n__take(X1, X2) 79.74/21.37 activate(n__zeros) -> zeros 79.74/21.37 activate(n__take(X1, X2)) -> take(X1, X2) 79.74/21.37 activate(X) -> X 79.74/21.37 79.74/21.37 S is empty. 79.74/21.37 Rewrite Strategy: FULL 79.74/21.37 ---------------------------------------- 79.74/21.37 79.74/21.37 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 79.74/21.37 Transformed a relative TRS into a decreasing-loop problem. 79.74/21.37 ---------------------------------------- 79.74/21.37 79.74/21.37 (2) 79.74/21.37 Obligation: 79.74/21.37 Analyzing the following TRS for decreasing loops: 79.74/21.37 79.74/21.37 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 79.74/21.37 79.74/21.37 79.74/21.37 The TRS R consists of the following rules: 79.74/21.37 79.74/21.37 zeros -> cons(0, n__zeros) 79.74/21.37 U11(tt, L) -> U12(tt, activate(L)) 79.74/21.37 U12(tt, L) -> s(length(activate(L))) 79.74/21.37 U21(tt, IL, M, N) -> U22(tt, activate(IL), activate(M), activate(N)) 79.74/21.37 U22(tt, IL, M, N) -> U23(tt, activate(IL), activate(M), activate(N)) 79.74/21.37 U23(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) 79.74/21.37 length(nil) -> 0 79.74/21.37 length(cons(N, L)) -> U11(tt, activate(L)) 79.74/21.37 take(0, IL) -> nil 79.74/21.37 take(s(M), cons(N, IL)) -> U21(tt, activate(IL), M, N) 79.74/21.37 zeros -> n__zeros 79.74/21.37 take(X1, X2) -> n__take(X1, X2) 79.74/21.37 activate(n__zeros) -> zeros 79.74/21.37 activate(n__take(X1, X2)) -> take(X1, X2) 79.74/21.37 activate(X) -> X 79.74/21.37 79.74/21.37 S is empty. 79.74/21.37 Rewrite Strategy: FULL 79.74/21.37 ---------------------------------------- 79.74/21.37 79.74/21.37 (3) DecreasingLoopProof (LOWER BOUND(ID)) 79.74/21.37 The following loop(s) give(s) rise to the lower bound Omega(n^1): 79.74/21.37 79.74/21.37 The rewrite sequence 79.74/21.37 79.74/21.37 activate(n__take(s(M1_0), cons(N2_0, IL3_0))) ->^+ U21(tt, activate(IL3_0), M1_0, N2_0) 79.74/21.37 79.74/21.37 gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. 79.74/21.37 79.74/21.37 The pumping substitution is [IL3_0 / n__take(s(M1_0), cons(N2_0, IL3_0))]. 79.74/21.37 79.74/21.37 The result substitution is [ ]. 79.74/21.37 79.74/21.37 79.74/21.37 79.74/21.37 79.74/21.37 ---------------------------------------- 79.74/21.37 79.74/21.37 (4) 79.74/21.37 Complex Obligation (BEST) 79.74/21.37 79.74/21.37 ---------------------------------------- 79.74/21.37 79.74/21.37 (5) 79.74/21.37 Obligation: 79.74/21.37 Proved the lower bound n^1 for the following obligation: 79.74/21.37 79.74/21.37 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 79.74/21.37 79.74/21.37 79.74/21.37 The TRS R consists of the following rules: 79.74/21.37 79.74/21.37 zeros -> cons(0, n__zeros) 79.74/21.37 U11(tt, L) -> U12(tt, activate(L)) 79.74/21.37 U12(tt, L) -> s(length(activate(L))) 79.74/21.37 U21(tt, IL, M, N) -> U22(tt, activate(IL), activate(M), activate(N)) 79.74/21.37 U22(tt, IL, M, N) -> U23(tt, activate(IL), activate(M), activate(N)) 79.74/21.37 U23(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) 79.74/21.37 length(nil) -> 0 79.74/21.37 length(cons(N, L)) -> U11(tt, activate(L)) 79.74/21.37 take(0, IL) -> nil 79.74/21.37 take(s(M), cons(N, IL)) -> U21(tt, activate(IL), M, N) 79.74/21.37 zeros -> n__zeros 79.74/21.37 take(X1, X2) -> n__take(X1, X2) 79.74/21.37 activate(n__zeros) -> zeros 79.74/21.37 activate(n__take(X1, X2)) -> take(X1, X2) 79.74/21.37 activate(X) -> X 79.74/21.37 79.74/21.37 S is empty. 79.74/21.37 Rewrite Strategy: FULL 79.74/21.37 ---------------------------------------- 79.74/21.37 79.74/21.37 (6) LowerBoundPropagationProof (FINISHED) 79.74/21.37 Propagated lower bound. 79.74/21.37 ---------------------------------------- 79.74/21.37 79.74/21.37 (7) 79.74/21.37 BOUNDS(n^1, INF) 79.74/21.37 79.74/21.37 ---------------------------------------- 79.74/21.37 79.74/21.37 (8) 79.74/21.37 Obligation: 79.74/21.37 Analyzing the following TRS for decreasing loops: 79.74/21.37 79.74/21.37 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 79.74/21.37 79.74/21.37 79.74/21.37 The TRS R consists of the following rules: 79.74/21.37 79.74/21.37 zeros -> cons(0, n__zeros) 79.74/21.37 U11(tt, L) -> U12(tt, activate(L)) 79.74/21.37 U12(tt, L) -> s(length(activate(L))) 79.74/21.37 U21(tt, IL, M, N) -> U22(tt, activate(IL), activate(M), activate(N)) 79.74/21.37 U22(tt, IL, M, N) -> U23(tt, activate(IL), activate(M), activate(N)) 79.74/21.37 U23(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) 79.74/21.37 length(nil) -> 0 79.74/21.37 length(cons(N, L)) -> U11(tt, activate(L)) 79.74/21.37 take(0, IL) -> nil 79.74/21.37 take(s(M), cons(N, IL)) -> U21(tt, activate(IL), M, N) 79.74/21.37 zeros -> n__zeros 79.74/21.37 take(X1, X2) -> n__take(X1, X2) 79.74/21.37 activate(n__zeros) -> zeros 79.74/21.37 activate(n__take(X1, X2)) -> take(X1, X2) 79.74/21.37 activate(X) -> X 79.74/21.37 79.74/21.37 S is empty. 79.74/21.37 Rewrite Strategy: FULL 79.74/21.37 ---------------------------------------- 79.74/21.37 79.74/21.37 (9) InfiniteLowerBoundProof (FINISHED) 79.74/21.37 The following loop proves infinite runtime complexity: 79.74/21.37 79.74/21.37 The rewrite sequence 79.74/21.37 79.74/21.37 length(cons(N, n__zeros)) ->^+ s(length(cons(0, n__zeros))) 79.74/21.37 79.74/21.37 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 79.74/21.37 79.74/21.37 The pumping substitution is [ ]. 79.74/21.37 79.74/21.37 The result substitution is [N / 0]. 79.74/21.37 79.74/21.37 79.74/21.37 79.74/21.37 79.74/21.37 ---------------------------------------- 79.74/21.37 79.74/21.37 (10) 79.74/21.37 BOUNDS(INF, INF) 79.95/21.41 EOF