10.26/3.43 WORST_CASE(NON_POLY, ?) 10.26/3.45 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 10.26/3.45 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 10.26/3.45 10.26/3.45 10.26/3.45 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 10.26/3.45 10.26/3.45 (0) CpxTRS 10.26/3.45 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 10.26/3.45 (2) TRS for Loop Detection 10.26/3.45 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 10.26/3.45 (4) BEST 10.26/3.45 (5) proven lower bound 10.26/3.45 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 10.26/3.45 (7) BOUNDS(n^1, INF) 10.26/3.45 (8) TRS for Loop Detection 10.26/3.45 (9) InfiniteLowerBoundProof [FINISHED, 1265 ms] 10.26/3.45 (10) BOUNDS(INF, INF) 10.26/3.45 10.26/3.45 10.26/3.45 ---------------------------------------- 10.26/3.45 10.26/3.45 (0) 10.26/3.45 Obligation: 10.26/3.45 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 10.26/3.45 10.26/3.45 10.26/3.45 The TRS R consists of the following rules: 10.26/3.45 10.26/3.45 incr(nil) -> nil 10.26/3.45 incr(cons(X, L)) -> cons(s(X), n__incr(activate(L))) 10.26/3.45 adx(nil) -> nil 10.26/3.45 adx(cons(X, L)) -> incr(cons(X, n__adx(activate(L)))) 10.26/3.45 nats -> adx(zeros) 10.26/3.45 zeros -> cons(0, n__zeros) 10.26/3.45 head(cons(X, L)) -> X 10.26/3.45 tail(cons(X, L)) -> activate(L) 10.26/3.45 incr(X) -> n__incr(X) 10.26/3.45 adx(X) -> n__adx(X) 10.26/3.45 zeros -> n__zeros 10.26/3.45 activate(n__incr(X)) -> incr(activate(X)) 10.26/3.45 activate(n__adx(X)) -> adx(activate(X)) 10.26/3.45 activate(n__zeros) -> zeros 10.26/3.45 activate(X) -> X 10.26/3.45 10.26/3.45 S is empty. 10.26/3.45 Rewrite Strategy: FULL 10.26/3.45 ---------------------------------------- 10.26/3.45 10.26/3.45 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 10.26/3.45 Transformed a relative TRS into a decreasing-loop problem. 10.26/3.45 ---------------------------------------- 10.26/3.45 10.26/3.45 (2) 10.26/3.45 Obligation: 10.26/3.45 Analyzing the following TRS for decreasing loops: 10.26/3.45 10.26/3.45 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 10.26/3.45 10.26/3.45 10.26/3.45 The TRS R consists of the following rules: 10.26/3.45 10.26/3.45 incr(nil) -> nil 10.26/3.45 incr(cons(X, L)) -> cons(s(X), n__incr(activate(L))) 10.26/3.45 adx(nil) -> nil 10.26/3.45 adx(cons(X, L)) -> incr(cons(X, n__adx(activate(L)))) 10.26/3.45 nats -> adx(zeros) 10.26/3.45 zeros -> cons(0, n__zeros) 10.26/3.45 head(cons(X, L)) -> X 10.26/3.45 tail(cons(X, L)) -> activate(L) 10.26/3.45 incr(X) -> n__incr(X) 10.26/3.45 adx(X) -> n__adx(X) 10.26/3.45 zeros -> n__zeros 10.26/3.45 activate(n__incr(X)) -> incr(activate(X)) 10.26/3.45 activate(n__adx(X)) -> adx(activate(X)) 10.26/3.45 activate(n__zeros) -> zeros 10.26/3.45 activate(X) -> X 10.26/3.45 10.26/3.45 S is empty. 10.26/3.45 Rewrite Strategy: FULL 10.26/3.45 ---------------------------------------- 10.26/3.45 10.26/3.45 (3) DecreasingLoopProof (LOWER BOUND(ID)) 10.26/3.45 The following loop(s) give(s) rise to the lower bound Omega(n^1): 10.26/3.45 10.26/3.45 The rewrite sequence 10.26/3.45 10.26/3.45 activate(n__adx(X)) ->^+ adx(activate(X)) 10.26/3.45 10.26/3.45 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 10.26/3.45 10.26/3.45 The pumping substitution is [X / n__adx(X)]. 10.26/3.45 10.26/3.45 The result substitution is [ ]. 10.26/3.45 10.26/3.45 10.26/3.45 10.26/3.45 10.26/3.45 ---------------------------------------- 10.26/3.45 10.26/3.45 (4) 10.26/3.45 Complex Obligation (BEST) 10.26/3.45 10.26/3.45 ---------------------------------------- 10.26/3.45 10.26/3.45 (5) 10.26/3.45 Obligation: 10.26/3.45 Proved the lower bound n^1 for the following obligation: 10.26/3.45 10.26/3.45 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 10.26/3.45 10.26/3.45 10.26/3.45 The TRS R consists of the following rules: 10.26/3.45 10.26/3.45 incr(nil) -> nil 10.26/3.45 incr(cons(X, L)) -> cons(s(X), n__incr(activate(L))) 10.26/3.45 adx(nil) -> nil 10.26/3.45 adx(cons(X, L)) -> incr(cons(X, n__adx(activate(L)))) 10.26/3.45 nats -> adx(zeros) 10.26/3.45 zeros -> cons(0, n__zeros) 10.26/3.45 head(cons(X, L)) -> X 10.26/3.45 tail(cons(X, L)) -> activate(L) 10.26/3.45 incr(X) -> n__incr(X) 10.26/3.45 adx(X) -> n__adx(X) 10.26/3.45 zeros -> n__zeros 10.26/3.45 activate(n__incr(X)) -> incr(activate(X)) 10.26/3.45 activate(n__adx(X)) -> adx(activate(X)) 10.26/3.45 activate(n__zeros) -> zeros 10.26/3.45 activate(X) -> X 10.26/3.45 10.26/3.45 S is empty. 10.26/3.45 Rewrite Strategy: FULL 10.26/3.45 ---------------------------------------- 10.26/3.45 10.26/3.45 (6) LowerBoundPropagationProof (FINISHED) 10.26/3.45 Propagated lower bound. 10.26/3.45 ---------------------------------------- 10.26/3.45 10.26/3.45 (7) 10.26/3.45 BOUNDS(n^1, INF) 10.26/3.45 10.26/3.45 ---------------------------------------- 10.26/3.45 10.26/3.45 (8) 10.26/3.45 Obligation: 10.26/3.45 Analyzing the following TRS for decreasing loops: 10.26/3.45 10.26/3.45 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 10.26/3.45 10.26/3.45 10.26/3.45 The TRS R consists of the following rules: 10.26/3.45 10.26/3.45 incr(nil) -> nil 10.26/3.45 incr(cons(X, L)) -> cons(s(X), n__incr(activate(L))) 10.26/3.45 adx(nil) -> nil 10.26/3.45 adx(cons(X, L)) -> incr(cons(X, n__adx(activate(L)))) 10.26/3.45 nats -> adx(zeros) 10.26/3.45 zeros -> cons(0, n__zeros) 10.26/3.45 head(cons(X, L)) -> X 10.26/3.45 tail(cons(X, L)) -> activate(L) 10.26/3.45 incr(X) -> n__incr(X) 10.26/3.45 adx(X) -> n__adx(X) 10.26/3.45 zeros -> n__zeros 10.26/3.45 activate(n__incr(X)) -> incr(activate(X)) 10.26/3.45 activate(n__adx(X)) -> adx(activate(X)) 10.26/3.45 activate(n__zeros) -> zeros 10.26/3.45 activate(X) -> X 10.26/3.45 10.26/3.45 S is empty. 10.26/3.45 Rewrite Strategy: FULL 10.26/3.45 ---------------------------------------- 10.26/3.45 10.26/3.45 (9) InfiniteLowerBoundProof (FINISHED) 10.26/3.45 The following loop proves infinite runtime complexity: 10.26/3.45 10.26/3.45 The rewrite sequence 10.26/3.45 10.26/3.45 activate(n__adx(cons(X1_0, n__zeros))) ->^+ cons(s(X1_0), n__incr(activate(n__adx(cons(0, n__zeros))))) 10.26/3.45 10.26/3.45 gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0]. 10.26/3.45 10.26/3.45 The pumping substitution is [ ]. 10.26/3.45 10.26/3.45 The result substitution is [X1_0 / 0]. 10.26/3.45 10.26/3.45 10.26/3.45 10.26/3.45 10.26/3.45 ---------------------------------------- 10.26/3.45 10.26/3.45 (10) 10.26/3.45 BOUNDS(INF, INF) 10.57/3.49 EOF