3.29/1.62 WORST_CASE(NON_POLY, ?) 3.29/1.63 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.29/1.63 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.29/1.63 3.29/1.63 3.29/1.63 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.29/1.63 3.29/1.63 (0) CpxTRS 3.29/1.63 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.29/1.63 (2) TRS for Loop Detection 3.29/1.63 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.29/1.63 (4) BEST 3.29/1.63 (5) proven lower bound 3.29/1.63 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 3.29/1.63 (7) BOUNDS(n^1, INF) 3.29/1.63 (8) TRS for Loop Detection 3.29/1.63 (9) DecreasingLoopProof [FINISHED, 12 ms] 3.29/1.63 (10) BOUNDS(EXP, INF) 3.29/1.63 3.29/1.63 3.29/1.63 ---------------------------------------- 3.29/1.63 3.29/1.63 (0) 3.29/1.63 Obligation: 3.29/1.63 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.29/1.63 3.29/1.63 3.29/1.63 The TRS R consists of the following rules: 3.29/1.63 3.29/1.63 fib(N) -> sel(N, fib1(s(0), s(0))) 3.29/1.63 fib1(X, Y) -> cons(X, n__fib1(Y, n__add(X, Y))) 3.29/1.63 add(0, X) -> X 3.29/1.63 add(s(X), Y) -> s(add(X, Y)) 3.29/1.63 sel(0, cons(X, XS)) -> X 3.29/1.63 sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) 3.29/1.63 fib1(X1, X2) -> n__fib1(X1, X2) 3.29/1.63 add(X1, X2) -> n__add(X1, X2) 3.29/1.63 activate(n__fib1(X1, X2)) -> fib1(activate(X1), activate(X2)) 3.29/1.63 activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) 3.29/1.63 activate(X) -> X 3.29/1.63 3.29/1.63 S is empty. 3.29/1.63 Rewrite Strategy: FULL 3.29/1.63 ---------------------------------------- 3.29/1.63 3.29/1.63 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.29/1.63 Transformed a relative TRS into a decreasing-loop problem. 3.29/1.63 ---------------------------------------- 3.29/1.63 3.29/1.63 (2) 3.29/1.63 Obligation: 3.29/1.63 Analyzing the following TRS for decreasing loops: 3.29/1.63 3.29/1.63 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.29/1.63 3.29/1.63 3.29/1.63 The TRS R consists of the following rules: 3.29/1.63 3.29/1.63 fib(N) -> sel(N, fib1(s(0), s(0))) 3.29/1.63 fib1(X, Y) -> cons(X, n__fib1(Y, n__add(X, Y))) 3.29/1.63 add(0, X) -> X 3.29/1.63 add(s(X), Y) -> s(add(X, Y)) 3.29/1.63 sel(0, cons(X, XS)) -> X 3.29/1.63 sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) 3.29/1.63 fib1(X1, X2) -> n__fib1(X1, X2) 3.29/1.63 add(X1, X2) -> n__add(X1, X2) 3.29/1.63 activate(n__fib1(X1, X2)) -> fib1(activate(X1), activate(X2)) 3.29/1.63 activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) 3.29/1.63 activate(X) -> X 3.29/1.63 3.29/1.63 S is empty. 3.29/1.63 Rewrite Strategy: FULL 3.29/1.63 ---------------------------------------- 3.29/1.63 3.29/1.63 (3) DecreasingLoopProof (LOWER BOUND(ID)) 3.29/1.63 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.29/1.63 3.29/1.63 The rewrite sequence 3.29/1.63 3.29/1.63 activate(n__add(X1, X2)) ->^+ add(activate(X1), activate(X2)) 3.29/1.63 3.29/1.63 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.29/1.63 3.29/1.63 The pumping substitution is [X1 / n__add(X1, X2)]. 3.29/1.63 3.29/1.63 The result substitution is [ ]. 3.29/1.63 3.29/1.63 3.29/1.63 3.29/1.63 3.29/1.63 ---------------------------------------- 3.29/1.63 3.29/1.63 (4) 3.29/1.63 Complex Obligation (BEST) 3.29/1.63 3.29/1.63 ---------------------------------------- 3.29/1.63 3.29/1.63 (5) 3.29/1.63 Obligation: 3.29/1.63 Proved the lower bound n^1 for the following obligation: 3.29/1.63 3.29/1.63 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.29/1.63 3.29/1.63 3.29/1.63 The TRS R consists of the following rules: 3.29/1.63 3.29/1.63 fib(N) -> sel(N, fib1(s(0), s(0))) 3.29/1.63 fib1(X, Y) -> cons(X, n__fib1(Y, n__add(X, Y))) 3.29/1.63 add(0, X) -> X 3.29/1.63 add(s(X), Y) -> s(add(X, Y)) 3.29/1.63 sel(0, cons(X, XS)) -> X 3.29/1.63 sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) 3.29/1.63 fib1(X1, X2) -> n__fib1(X1, X2) 3.29/1.63 add(X1, X2) -> n__add(X1, X2) 3.29/1.63 activate(n__fib1(X1, X2)) -> fib1(activate(X1), activate(X2)) 3.29/1.63 activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) 3.29/1.63 activate(X) -> X 3.29/1.63 3.29/1.63 S is empty. 3.29/1.63 Rewrite Strategy: FULL 3.29/1.63 ---------------------------------------- 3.29/1.63 3.29/1.63 (6) LowerBoundPropagationProof (FINISHED) 3.29/1.63 Propagated lower bound. 3.29/1.63 ---------------------------------------- 3.29/1.63 3.29/1.63 (7) 3.29/1.63 BOUNDS(n^1, INF) 3.29/1.63 3.29/1.63 ---------------------------------------- 3.29/1.63 3.29/1.63 (8) 3.29/1.63 Obligation: 3.29/1.63 Analyzing the following TRS for decreasing loops: 3.29/1.63 3.29/1.63 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.29/1.63 3.29/1.63 3.29/1.63 The TRS R consists of the following rules: 3.29/1.63 3.29/1.63 fib(N) -> sel(N, fib1(s(0), s(0))) 3.29/1.63 fib1(X, Y) -> cons(X, n__fib1(Y, n__add(X, Y))) 3.29/1.63 add(0, X) -> X 3.29/1.63 add(s(X), Y) -> s(add(X, Y)) 3.29/1.63 sel(0, cons(X, XS)) -> X 3.29/1.63 sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) 3.29/1.63 fib1(X1, X2) -> n__fib1(X1, X2) 3.29/1.63 add(X1, X2) -> n__add(X1, X2) 3.29/1.63 activate(n__fib1(X1, X2)) -> fib1(activate(X1), activate(X2)) 3.29/1.63 activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) 3.29/1.63 activate(X) -> X 3.29/1.63 3.29/1.63 S is empty. 3.29/1.63 Rewrite Strategy: FULL 3.29/1.63 ---------------------------------------- 3.29/1.63 3.29/1.63 (9) DecreasingLoopProof (FINISHED) 3.29/1.63 The following loop(s) give(s) rise to the lower bound EXP: 3.29/1.63 3.29/1.63 The rewrite sequence 3.29/1.63 3.29/1.63 activate(n__fib1(X1, X2)) ->^+ cons(activate(X1), n__fib1(activate(X2), n__add(activate(X1), activate(X2)))) 3.29/1.63 3.29/1.63 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.29/1.63 3.29/1.63 The pumping substitution is [X1 / n__fib1(X1, X2)]. 3.29/1.63 3.29/1.63 The result substitution is [ ]. 3.29/1.63 3.29/1.63 3.29/1.63 3.29/1.63 The rewrite sequence 3.29/1.63 3.29/1.63 activate(n__fib1(X1, X2)) ->^+ cons(activate(X1), n__fib1(activate(X2), n__add(activate(X1), activate(X2)))) 3.29/1.63 3.29/1.63 gives rise to a decreasing loop by considering the right hand sides subterm at position [1,1,0]. 3.29/1.63 3.29/1.63 The pumping substitution is [X1 / n__fib1(X1, X2)]. 3.29/1.63 3.29/1.63 The result substitution is [ ]. 3.29/1.63 3.29/1.63 3.29/1.63 3.29/1.63 3.29/1.63 ---------------------------------------- 3.29/1.63 3.29/1.63 (10) 3.29/1.63 BOUNDS(EXP, INF) 3.29/1.65 EOF