3.94/1.89 WORST_CASE(NON_POLY, ?) 3.94/1.89 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.94/1.89 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.94/1.89 3.94/1.89 3.94/1.89 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.94/1.89 3.94/1.89 (0) CpxTRS 3.94/1.89 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.94/1.89 (2) TRS for Loop Detection 3.94/1.89 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.94/1.89 (4) BEST 3.94/1.89 (5) proven lower bound 3.94/1.89 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 3.94/1.89 (7) BOUNDS(n^1, INF) 3.94/1.89 (8) TRS for Loop Detection 3.94/1.89 (9) DecreasingLoopProof [FINISHED, 76 ms] 3.94/1.89 (10) BOUNDS(EXP, INF) 3.94/1.89 3.94/1.89 3.94/1.89 ---------------------------------------- 3.94/1.89 3.94/1.89 (0) 3.94/1.89 Obligation: 3.94/1.89 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.94/1.89 3.94/1.89 3.94/1.89 The TRS R consists of the following rules: 3.94/1.89 3.94/1.89 a__primes -> a__sieve(a__from(s(s(0)))) 3.94/1.89 a__from(X) -> cons(mark(X), from(s(X))) 3.94/1.89 a__head(cons(X, Y)) -> mark(X) 3.94/1.89 a__tail(cons(X, Y)) -> mark(Y) 3.94/1.89 a__if(true, X, Y) -> mark(X) 3.94/1.89 a__if(false, X, Y) -> mark(Y) 3.94/1.89 a__filter(s(s(X)), cons(Y, Z)) -> a__if(divides(s(s(mark(X))), mark(Y)), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))) 3.94/1.89 a__sieve(cons(X, Y)) -> cons(mark(X), filter(X, sieve(Y))) 3.94/1.89 mark(primes) -> a__primes 3.94/1.89 mark(sieve(X)) -> a__sieve(mark(X)) 3.94/1.89 mark(from(X)) -> a__from(mark(X)) 3.94/1.89 mark(head(X)) -> a__head(mark(X)) 3.94/1.89 mark(tail(X)) -> a__tail(mark(X)) 3.94/1.89 mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) 3.94/1.89 mark(filter(X1, X2)) -> a__filter(mark(X1), mark(X2)) 3.94/1.89 mark(s(X)) -> s(mark(X)) 3.94/1.89 mark(0) -> 0 3.94/1.89 mark(cons(X1, X2)) -> cons(mark(X1), X2) 3.94/1.89 mark(true) -> true 3.94/1.89 mark(false) -> false 3.94/1.89 mark(divides(X1, X2)) -> divides(mark(X1), mark(X2)) 3.94/1.89 a__primes -> primes 3.94/1.89 a__sieve(X) -> sieve(X) 3.94/1.89 a__from(X) -> from(X) 3.94/1.89 a__head(X) -> head(X) 3.94/1.89 a__tail(X) -> tail(X) 3.94/1.89 a__if(X1, X2, X3) -> if(X1, X2, X3) 3.94/1.89 a__filter(X1, X2) -> filter(X1, X2) 3.94/1.89 3.94/1.89 S is empty. 3.94/1.89 Rewrite Strategy: FULL 3.94/1.89 ---------------------------------------- 3.94/1.89 3.94/1.89 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.94/1.89 Transformed a relative TRS into a decreasing-loop problem. 3.94/1.89 ---------------------------------------- 3.94/1.89 3.94/1.89 (2) 3.94/1.89 Obligation: 3.94/1.89 Analyzing the following TRS for decreasing loops: 3.94/1.89 3.94/1.89 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.94/1.89 3.94/1.89 3.94/1.89 The TRS R consists of the following rules: 3.94/1.89 3.94/1.89 a__primes -> a__sieve(a__from(s(s(0)))) 3.94/1.89 a__from(X) -> cons(mark(X), from(s(X))) 3.94/1.89 a__head(cons(X, Y)) -> mark(X) 3.94/1.89 a__tail(cons(X, Y)) -> mark(Y) 3.94/1.89 a__if(true, X, Y) -> mark(X) 3.94/1.89 a__if(false, X, Y) -> mark(Y) 3.94/1.89 a__filter(s(s(X)), cons(Y, Z)) -> a__if(divides(s(s(mark(X))), mark(Y)), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))) 3.94/1.89 a__sieve(cons(X, Y)) -> cons(mark(X), filter(X, sieve(Y))) 3.94/1.89 mark(primes) -> a__primes 3.94/1.89 mark(sieve(X)) -> a__sieve(mark(X)) 3.94/1.89 mark(from(X)) -> a__from(mark(X)) 3.94/1.89 mark(head(X)) -> a__head(mark(X)) 3.94/1.89 mark(tail(X)) -> a__tail(mark(X)) 3.94/1.89 mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) 3.94/1.89 mark(filter(X1, X2)) -> a__filter(mark(X1), mark(X2)) 3.94/1.89 mark(s(X)) -> s(mark(X)) 3.94/1.89 mark(0) -> 0 3.94/1.89 mark(cons(X1, X2)) -> cons(mark(X1), X2) 3.94/1.89 mark(true) -> true 3.94/1.89 mark(false) -> false 3.94/1.89 mark(divides(X1, X2)) -> divides(mark(X1), mark(X2)) 3.94/1.89 a__primes -> primes 3.94/1.89 a__sieve(X) -> sieve(X) 3.94/1.89 a__from(X) -> from(X) 3.94/1.89 a__head(X) -> head(X) 3.94/1.89 a__tail(X) -> tail(X) 3.94/1.89 a__if(X1, X2, X3) -> if(X1, X2, X3) 3.94/1.89 a__filter(X1, X2) -> filter(X1, X2) 3.94/1.89 3.94/1.89 S is empty. 3.94/1.89 Rewrite Strategy: FULL 3.94/1.89 ---------------------------------------- 3.94/1.89 3.94/1.89 (3) DecreasingLoopProof (LOWER BOUND(ID)) 3.94/1.89 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.94/1.89 3.94/1.89 The rewrite sequence 3.94/1.89 3.94/1.89 mark(from(X)) ->^+ a__from(mark(X)) 3.94/1.89 3.94/1.89 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.94/1.89 3.94/1.89 The pumping substitution is [X / from(X)]. 3.94/1.89 3.94/1.89 The result substitution is [ ]. 3.94/1.89 3.94/1.89 3.94/1.89 3.94/1.89 3.94/1.89 ---------------------------------------- 3.94/1.89 3.94/1.89 (4) 3.94/1.89 Complex Obligation (BEST) 3.94/1.89 3.94/1.89 ---------------------------------------- 3.94/1.89 3.94/1.89 (5) 3.94/1.89 Obligation: 3.94/1.89 Proved the lower bound n^1 for the following obligation: 3.94/1.89 3.94/1.89 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.94/1.89 3.94/1.89 3.94/1.89 The TRS R consists of the following rules: 3.94/1.89 3.94/1.89 a__primes -> a__sieve(a__from(s(s(0)))) 3.94/1.89 a__from(X) -> cons(mark(X), from(s(X))) 3.94/1.89 a__head(cons(X, Y)) -> mark(X) 3.94/1.89 a__tail(cons(X, Y)) -> mark(Y) 3.94/1.89 a__if(true, X, Y) -> mark(X) 3.94/1.89 a__if(false, X, Y) -> mark(Y) 3.94/1.89 a__filter(s(s(X)), cons(Y, Z)) -> a__if(divides(s(s(mark(X))), mark(Y)), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))) 3.94/1.89 a__sieve(cons(X, Y)) -> cons(mark(X), filter(X, sieve(Y))) 3.94/1.89 mark(primes) -> a__primes 3.94/1.89 mark(sieve(X)) -> a__sieve(mark(X)) 3.94/1.89 mark(from(X)) -> a__from(mark(X)) 3.94/1.89 mark(head(X)) -> a__head(mark(X)) 3.94/1.89 mark(tail(X)) -> a__tail(mark(X)) 3.94/1.89 mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) 3.94/1.89 mark(filter(X1, X2)) -> a__filter(mark(X1), mark(X2)) 3.94/1.89 mark(s(X)) -> s(mark(X)) 3.94/1.89 mark(0) -> 0 3.94/1.89 mark(cons(X1, X2)) -> cons(mark(X1), X2) 3.94/1.89 mark(true) -> true 3.94/1.89 mark(false) -> false 3.94/1.89 mark(divides(X1, X2)) -> divides(mark(X1), mark(X2)) 3.94/1.89 a__primes -> primes 3.94/1.89 a__sieve(X) -> sieve(X) 3.94/1.89 a__from(X) -> from(X) 3.94/1.89 a__head(X) -> head(X) 3.94/1.89 a__tail(X) -> tail(X) 3.94/1.89 a__if(X1, X2, X3) -> if(X1, X2, X3) 3.94/1.89 a__filter(X1, X2) -> filter(X1, X2) 3.94/1.89 3.94/1.89 S is empty. 3.94/1.89 Rewrite Strategy: FULL 3.94/1.89 ---------------------------------------- 3.94/1.89 3.94/1.89 (6) LowerBoundPropagationProof (FINISHED) 3.94/1.89 Propagated lower bound. 3.94/1.89 ---------------------------------------- 3.94/1.89 3.94/1.89 (7) 3.94/1.89 BOUNDS(n^1, INF) 3.94/1.89 3.94/1.89 ---------------------------------------- 3.94/1.89 3.94/1.89 (8) 3.94/1.89 Obligation: 3.94/1.89 Analyzing the following TRS for decreasing loops: 3.94/1.89 3.94/1.89 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.94/1.89 3.94/1.89 3.94/1.89 The TRS R consists of the following rules: 3.94/1.89 3.94/1.89 a__primes -> a__sieve(a__from(s(s(0)))) 3.94/1.89 a__from(X) -> cons(mark(X), from(s(X))) 3.94/1.89 a__head(cons(X, Y)) -> mark(X) 3.94/1.89 a__tail(cons(X, Y)) -> mark(Y) 3.94/1.89 a__if(true, X, Y) -> mark(X) 3.94/1.89 a__if(false, X, Y) -> mark(Y) 3.94/1.89 a__filter(s(s(X)), cons(Y, Z)) -> a__if(divides(s(s(mark(X))), mark(Y)), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))) 3.94/1.89 a__sieve(cons(X, Y)) -> cons(mark(X), filter(X, sieve(Y))) 3.94/1.89 mark(primes) -> a__primes 3.94/1.89 mark(sieve(X)) -> a__sieve(mark(X)) 3.94/1.89 mark(from(X)) -> a__from(mark(X)) 3.94/1.89 mark(head(X)) -> a__head(mark(X)) 3.94/1.89 mark(tail(X)) -> a__tail(mark(X)) 3.94/1.89 mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) 3.94/1.89 mark(filter(X1, X2)) -> a__filter(mark(X1), mark(X2)) 3.94/1.89 mark(s(X)) -> s(mark(X)) 3.94/1.89 mark(0) -> 0 3.94/1.89 mark(cons(X1, X2)) -> cons(mark(X1), X2) 3.94/1.89 mark(true) -> true 3.94/1.89 mark(false) -> false 3.94/1.89 mark(divides(X1, X2)) -> divides(mark(X1), mark(X2)) 3.94/1.89 a__primes -> primes 3.94/1.89 a__sieve(X) -> sieve(X) 3.94/1.89 a__from(X) -> from(X) 3.94/1.89 a__head(X) -> head(X) 3.94/1.89 a__tail(X) -> tail(X) 3.94/1.89 a__if(X1, X2, X3) -> if(X1, X2, X3) 3.94/1.89 a__filter(X1, X2) -> filter(X1, X2) 3.94/1.89 3.94/1.89 S is empty. 3.94/1.89 Rewrite Strategy: FULL 3.94/1.89 ---------------------------------------- 3.94/1.89 3.94/1.89 (9) DecreasingLoopProof (FINISHED) 3.94/1.89 The following loop(s) give(s) rise to the lower bound EXP: 3.94/1.89 3.94/1.89 The rewrite sequence 3.94/1.89 3.94/1.89 mark(from(X)) ->^+ cons(mark(mark(X)), from(s(mark(X)))) 3.94/1.89 3.94/1.89 gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0]. 3.94/1.89 3.94/1.89 The pumping substitution is [X / from(X)]. 3.94/1.89 3.94/1.89 The result substitution is [ ]. 3.94/1.89 3.94/1.89 3.94/1.89 3.94/1.89 The rewrite sequence 3.94/1.89 3.94/1.89 mark(from(X)) ->^+ cons(mark(mark(X)), from(s(mark(X)))) 3.94/1.89 3.94/1.89 gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0,0]. 3.94/1.89 3.94/1.89 The pumping substitution is [X / from(X)]. 3.94/1.89 3.94/1.89 The result substitution is [ ]. 3.94/1.89 3.94/1.89 3.94/1.89 3.94/1.89 3.94/1.89 ---------------------------------------- 3.94/1.89 3.94/1.89 (10) 3.94/1.89 BOUNDS(EXP, INF) 4.28/3.00 EOF