3.52/1.96 WORST_CASE(NON_POLY, ?) 3.52/1.98 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.52/1.98 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.52/1.98 3.52/1.98 3.52/1.98 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.52/1.98 3.52/1.98 (0) CpxTRS 3.52/1.98 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.52/1.98 (2) TRS for Loop Detection 3.52/1.98 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.52/1.98 (4) BEST 3.52/1.98 (5) proven lower bound 3.52/1.98 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 3.52/1.98 (7) BOUNDS(n^1, INF) 3.52/1.98 (8) TRS for Loop Detection 3.52/1.98 (9) DecreasingLoopProof [FINISHED, 34 ms] 3.52/1.98 (10) BOUNDS(EXP, INF) 3.52/1.98 3.52/1.98 3.52/1.98 ---------------------------------------- 3.52/1.98 3.52/1.98 (0) 3.52/1.98 Obligation: 3.52/1.98 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.52/1.98 3.52/1.98 3.52/1.98 The TRS R consists of the following rules: 3.52/1.98 3.52/1.98 from(X) -> cons(X, n__from(n__s(X))) 3.52/1.98 sel(0, cons(X, XS)) -> X 3.52/1.98 sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) 3.52/1.98 minus(X, 0) -> 0 3.52/1.98 minus(s(X), s(Y)) -> minus(X, Y) 3.52/1.98 quot(0, s(Y)) -> 0 3.52/1.98 quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) 3.52/1.98 zWquot(XS, nil) -> nil 3.52/1.98 zWquot(nil, XS) -> nil 3.52/1.98 zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), n__zWquot(activate(XS), activate(YS))) 3.52/1.98 from(X) -> n__from(X) 3.52/1.98 s(X) -> n__s(X) 3.52/1.98 zWquot(X1, X2) -> n__zWquot(X1, X2) 3.52/1.98 activate(n__from(X)) -> from(activate(X)) 3.52/1.98 activate(n__s(X)) -> s(activate(X)) 3.52/1.98 activate(n__zWquot(X1, X2)) -> zWquot(activate(X1), activate(X2)) 3.52/1.98 activate(X) -> X 3.52/1.98 3.52/1.98 S is empty. 3.52/1.98 Rewrite Strategy: FULL 3.52/1.98 ---------------------------------------- 3.52/1.98 3.52/1.98 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.52/1.98 Transformed a relative TRS into a decreasing-loop problem. 3.52/1.98 ---------------------------------------- 3.52/1.98 3.52/1.98 (2) 3.52/1.98 Obligation: 3.52/1.98 Analyzing the following TRS for decreasing loops: 3.52/1.98 3.52/1.98 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.52/1.98 3.52/1.98 3.52/1.98 The TRS R consists of the following rules: 3.52/1.98 3.52/1.98 from(X) -> cons(X, n__from(n__s(X))) 3.52/1.98 sel(0, cons(X, XS)) -> X 3.52/1.98 sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) 3.52/1.98 minus(X, 0) -> 0 3.52/1.98 minus(s(X), s(Y)) -> minus(X, Y) 3.52/1.98 quot(0, s(Y)) -> 0 3.52/1.98 quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) 3.52/1.98 zWquot(XS, nil) -> nil 3.52/1.98 zWquot(nil, XS) -> nil 3.52/1.98 zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), n__zWquot(activate(XS), activate(YS))) 3.52/1.98 from(X) -> n__from(X) 3.52/1.98 s(X) -> n__s(X) 3.52/1.98 zWquot(X1, X2) -> n__zWquot(X1, X2) 3.52/1.98 activate(n__from(X)) -> from(activate(X)) 3.52/1.98 activate(n__s(X)) -> s(activate(X)) 3.52/1.98 activate(n__zWquot(X1, X2)) -> zWquot(activate(X1), activate(X2)) 3.52/1.98 activate(X) -> X 3.52/1.98 3.52/1.98 S is empty. 3.52/1.98 Rewrite Strategy: FULL 3.52/1.98 ---------------------------------------- 3.52/1.98 3.52/1.98 (3) DecreasingLoopProof (LOWER BOUND(ID)) 3.52/1.98 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.52/1.98 3.52/1.98 The rewrite sequence 3.52/1.98 3.52/1.98 activate(n__zWquot(X1, X2)) ->^+ zWquot(activate(X1), activate(X2)) 3.52/1.98 3.52/1.98 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.52/1.98 3.52/1.98 The pumping substitution is [X1 / n__zWquot(X1, X2)]. 3.52/1.98 3.52/1.98 The result substitution is [ ]. 3.52/1.98 3.52/1.98 3.52/1.98 3.52/1.98 3.52/1.98 ---------------------------------------- 3.52/1.98 3.52/1.98 (4) 3.52/1.98 Complex Obligation (BEST) 3.52/1.98 3.52/1.98 ---------------------------------------- 3.52/1.98 3.52/1.98 (5) 3.52/1.98 Obligation: 3.52/1.98 Proved the lower bound n^1 for the following obligation: 3.52/1.98 3.52/1.98 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.52/1.98 3.52/1.98 3.52/1.98 The TRS R consists of the following rules: 3.52/1.98 3.52/1.98 from(X) -> cons(X, n__from(n__s(X))) 3.52/1.98 sel(0, cons(X, XS)) -> X 3.52/1.98 sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) 3.52/1.98 minus(X, 0) -> 0 3.52/1.98 minus(s(X), s(Y)) -> minus(X, Y) 3.52/1.98 quot(0, s(Y)) -> 0 3.52/1.98 quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) 3.52/1.98 zWquot(XS, nil) -> nil 3.52/1.98 zWquot(nil, XS) -> nil 3.52/1.98 zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), n__zWquot(activate(XS), activate(YS))) 3.52/1.98 from(X) -> n__from(X) 3.52/1.98 s(X) -> n__s(X) 3.52/1.98 zWquot(X1, X2) -> n__zWquot(X1, X2) 3.52/1.98 activate(n__from(X)) -> from(activate(X)) 3.52/1.98 activate(n__s(X)) -> s(activate(X)) 3.52/1.98 activate(n__zWquot(X1, X2)) -> zWquot(activate(X1), activate(X2)) 3.52/1.98 activate(X) -> X 3.52/1.98 3.52/1.98 S is empty. 3.52/1.98 Rewrite Strategy: FULL 3.52/1.98 ---------------------------------------- 3.52/1.98 3.52/1.98 (6) LowerBoundPropagationProof (FINISHED) 3.52/1.98 Propagated lower bound. 3.52/1.98 ---------------------------------------- 3.52/1.98 3.52/1.98 (7) 3.52/1.98 BOUNDS(n^1, INF) 3.52/1.98 3.52/1.98 ---------------------------------------- 3.52/1.98 3.52/1.98 (8) 3.52/1.98 Obligation: 3.52/1.98 Analyzing the following TRS for decreasing loops: 3.52/1.98 3.52/1.98 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.52/1.98 3.52/1.98 3.52/1.98 The TRS R consists of the following rules: 3.52/1.98 3.52/1.98 from(X) -> cons(X, n__from(n__s(X))) 3.52/1.98 sel(0, cons(X, XS)) -> X 3.52/1.98 sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) 3.52/1.98 minus(X, 0) -> 0 3.52/1.98 minus(s(X), s(Y)) -> minus(X, Y) 3.52/1.98 quot(0, s(Y)) -> 0 3.52/1.98 quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) 3.52/1.98 zWquot(XS, nil) -> nil 3.52/1.98 zWquot(nil, XS) -> nil 3.52/1.98 zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), n__zWquot(activate(XS), activate(YS))) 3.52/1.98 from(X) -> n__from(X) 3.52/1.98 s(X) -> n__s(X) 3.52/1.98 zWquot(X1, X2) -> n__zWquot(X1, X2) 3.52/1.98 activate(n__from(X)) -> from(activate(X)) 3.52/1.98 activate(n__s(X)) -> s(activate(X)) 3.52/1.98 activate(n__zWquot(X1, X2)) -> zWquot(activate(X1), activate(X2)) 3.52/1.98 activate(X) -> X 3.52/1.98 3.52/1.98 S is empty. 3.52/1.98 Rewrite Strategy: FULL 3.52/1.98 ---------------------------------------- 3.52/1.98 3.52/1.98 (9) DecreasingLoopProof (FINISHED) 3.52/1.98 The following loop(s) give(s) rise to the lower bound EXP: 3.52/1.98 3.52/1.98 The rewrite sequence 3.52/1.98 3.52/1.98 activate(n__from(X)) ->^+ cons(activate(X), n__from(n__s(activate(X)))) 3.52/1.98 3.52/1.98 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.52/1.98 3.52/1.98 The pumping substitution is [X / n__from(X)]. 3.52/1.98 3.52/1.98 The result substitution is [ ]. 3.52/1.98 3.52/1.98 3.52/1.98 3.52/1.98 The rewrite sequence 3.52/1.98 3.52/1.98 activate(n__from(X)) ->^+ cons(activate(X), n__from(n__s(activate(X)))) 3.52/1.98 3.52/1.98 gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0,0]. 3.52/1.98 3.52/1.98 The pumping substitution is [X / n__from(X)]. 3.52/1.98 3.52/1.98 The result substitution is [ ]. 3.52/1.98 3.52/1.98 3.52/1.98 3.52/1.98 3.52/1.98 ---------------------------------------- 3.52/1.98 3.52/1.98 (10) 3.52/1.98 BOUNDS(EXP, INF) 3.64/2.03 EOF