3.78/1.78 WORST_CASE(NON_POLY, ?) 3.78/1.80 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.78/1.80 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.78/1.80 3.78/1.80 3.78/1.80 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.78/1.80 3.78/1.80 (0) CpxTRS 3.78/1.80 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.78/1.80 (2) TRS for Loop Detection 3.78/1.80 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.78/1.80 (4) BEST 3.78/1.80 (5) proven lower bound 3.78/1.80 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 3.78/1.80 (7) BOUNDS(n^1, INF) 3.78/1.80 (8) TRS for Loop Detection 3.78/1.80 (9) DecreasingLoopProof [FINISHED, 17 ms] 3.78/1.80 (10) BOUNDS(EXP, INF) 3.78/1.80 3.78/1.80 3.78/1.80 ---------------------------------------- 3.78/1.80 3.78/1.80 (0) 3.78/1.80 Obligation: 3.78/1.80 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.78/1.80 3.78/1.80 3.78/1.80 The TRS R consists of the following rules: 3.78/1.80 3.78/1.80 dbl(0) -> 0 3.78/1.80 dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) 3.78/1.80 dbls(nil) -> nil 3.78/1.80 dbls(cons(X, Y)) -> cons(n__dbl(activate(X)), n__dbls(activate(Y))) 3.78/1.80 sel(0, cons(X, Y)) -> activate(X) 3.78/1.80 sel(s(X), cons(Y, Z)) -> sel(activate(X), activate(Z)) 3.78/1.80 indx(nil, X) -> nil 3.78/1.80 indx(cons(X, Y), Z) -> cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z))) 3.78/1.80 from(X) -> cons(activate(X), n__from(n__s(activate(X)))) 3.78/1.80 s(X) -> n__s(X) 3.78/1.80 dbl(X) -> n__dbl(X) 3.78/1.80 dbls(X) -> n__dbls(X) 3.78/1.80 sel(X1, X2) -> n__sel(X1, X2) 3.78/1.80 indx(X1, X2) -> n__indx(X1, X2) 3.78/1.80 from(X) -> n__from(X) 3.78/1.80 activate(n__s(X)) -> s(X) 3.78/1.80 activate(n__dbl(X)) -> dbl(activate(X)) 3.78/1.80 activate(n__dbls(X)) -> dbls(activate(X)) 3.78/1.80 activate(n__sel(X1, X2)) -> sel(activate(X1), activate(X2)) 3.78/1.80 activate(n__indx(X1, X2)) -> indx(activate(X1), X2) 3.78/1.80 activate(n__from(X)) -> from(X) 3.78/1.80 activate(X) -> X 3.78/1.80 3.78/1.80 S is empty. 3.78/1.80 Rewrite Strategy: FULL 3.78/1.80 ---------------------------------------- 3.78/1.80 3.78/1.80 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.78/1.80 Transformed a relative TRS into a decreasing-loop problem. 3.78/1.80 ---------------------------------------- 3.78/1.80 3.78/1.80 (2) 3.78/1.80 Obligation: 3.78/1.80 Analyzing the following TRS for decreasing loops: 3.78/1.80 3.78/1.80 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.78/1.80 3.78/1.80 3.78/1.80 The TRS R consists of the following rules: 3.78/1.80 3.78/1.80 dbl(0) -> 0 3.78/1.80 dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) 3.78/1.80 dbls(nil) -> nil 3.78/1.80 dbls(cons(X, Y)) -> cons(n__dbl(activate(X)), n__dbls(activate(Y))) 3.78/1.80 sel(0, cons(X, Y)) -> activate(X) 3.78/1.80 sel(s(X), cons(Y, Z)) -> sel(activate(X), activate(Z)) 3.78/1.80 indx(nil, X) -> nil 3.78/1.80 indx(cons(X, Y), Z) -> cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z))) 3.78/1.80 from(X) -> cons(activate(X), n__from(n__s(activate(X)))) 3.78/1.80 s(X) -> n__s(X) 3.78/1.80 dbl(X) -> n__dbl(X) 3.78/1.80 dbls(X) -> n__dbls(X) 3.78/1.80 sel(X1, X2) -> n__sel(X1, X2) 3.78/1.80 indx(X1, X2) -> n__indx(X1, X2) 3.78/1.80 from(X) -> n__from(X) 3.78/1.80 activate(n__s(X)) -> s(X) 3.78/1.80 activate(n__dbl(X)) -> dbl(activate(X)) 3.78/1.80 activate(n__dbls(X)) -> dbls(activate(X)) 3.78/1.80 activate(n__sel(X1, X2)) -> sel(activate(X1), activate(X2)) 3.78/1.80 activate(n__indx(X1, X2)) -> indx(activate(X1), X2) 3.78/1.80 activate(n__from(X)) -> from(X) 3.78/1.80 activate(X) -> X 3.78/1.80 3.78/1.80 S is empty. 3.78/1.80 Rewrite Strategy: FULL 3.78/1.80 ---------------------------------------- 3.78/1.80 3.78/1.80 (3) DecreasingLoopProof (LOWER BOUND(ID)) 3.78/1.80 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.78/1.80 3.78/1.80 The rewrite sequence 3.78/1.80 3.78/1.80 activate(n__dbl(X)) ->^+ dbl(activate(X)) 3.78/1.80 3.78/1.80 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.78/1.80 3.78/1.80 The pumping substitution is [X / n__dbl(X)]. 3.78/1.80 3.78/1.80 The result substitution is [ ]. 3.78/1.80 3.78/1.80 3.78/1.80 3.78/1.80 3.78/1.80 ---------------------------------------- 3.78/1.80 3.78/1.80 (4) 3.78/1.80 Complex Obligation (BEST) 3.78/1.80 3.78/1.80 ---------------------------------------- 3.78/1.80 3.78/1.80 (5) 3.78/1.80 Obligation: 3.78/1.80 Proved the lower bound n^1 for the following obligation: 3.78/1.80 3.78/1.80 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.78/1.80 3.78/1.80 3.78/1.80 The TRS R consists of the following rules: 3.78/1.80 3.78/1.80 dbl(0) -> 0 3.78/1.80 dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) 3.78/1.80 dbls(nil) -> nil 3.78/1.80 dbls(cons(X, Y)) -> cons(n__dbl(activate(X)), n__dbls(activate(Y))) 3.78/1.80 sel(0, cons(X, Y)) -> activate(X) 3.78/1.80 sel(s(X), cons(Y, Z)) -> sel(activate(X), activate(Z)) 3.78/1.80 indx(nil, X) -> nil 3.78/1.80 indx(cons(X, Y), Z) -> cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z))) 3.78/1.80 from(X) -> cons(activate(X), n__from(n__s(activate(X)))) 3.78/1.80 s(X) -> n__s(X) 3.78/1.80 dbl(X) -> n__dbl(X) 3.78/1.80 dbls(X) -> n__dbls(X) 3.78/1.80 sel(X1, X2) -> n__sel(X1, X2) 3.78/1.80 indx(X1, X2) -> n__indx(X1, X2) 3.78/1.80 from(X) -> n__from(X) 3.78/1.80 activate(n__s(X)) -> s(X) 3.78/1.80 activate(n__dbl(X)) -> dbl(activate(X)) 3.78/1.80 activate(n__dbls(X)) -> dbls(activate(X)) 3.78/1.80 activate(n__sel(X1, X2)) -> sel(activate(X1), activate(X2)) 3.78/1.80 activate(n__indx(X1, X2)) -> indx(activate(X1), X2) 3.78/1.80 activate(n__from(X)) -> from(X) 3.78/1.80 activate(X) -> X 3.78/1.80 3.78/1.80 S is empty. 3.78/1.80 Rewrite Strategy: FULL 3.78/1.80 ---------------------------------------- 3.78/1.80 3.78/1.80 (6) LowerBoundPropagationProof (FINISHED) 3.78/1.80 Propagated lower bound. 3.78/1.80 ---------------------------------------- 3.78/1.80 3.78/1.80 (7) 3.78/1.80 BOUNDS(n^1, INF) 3.78/1.80 3.78/1.80 ---------------------------------------- 3.78/1.80 3.78/1.80 (8) 3.78/1.80 Obligation: 3.78/1.80 Analyzing the following TRS for decreasing loops: 3.78/1.80 3.78/1.80 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.78/1.80 3.78/1.80 3.78/1.80 The TRS R consists of the following rules: 3.78/1.80 3.78/1.80 dbl(0) -> 0 3.78/1.80 dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) 3.78/1.80 dbls(nil) -> nil 3.78/1.80 dbls(cons(X, Y)) -> cons(n__dbl(activate(X)), n__dbls(activate(Y))) 3.78/1.80 sel(0, cons(X, Y)) -> activate(X) 3.78/1.80 sel(s(X), cons(Y, Z)) -> sel(activate(X), activate(Z)) 3.78/1.80 indx(nil, X) -> nil 3.78/1.80 indx(cons(X, Y), Z) -> cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z))) 3.78/1.80 from(X) -> cons(activate(X), n__from(n__s(activate(X)))) 3.78/1.80 s(X) -> n__s(X) 3.78/1.80 dbl(X) -> n__dbl(X) 3.78/1.80 dbls(X) -> n__dbls(X) 3.78/1.80 sel(X1, X2) -> n__sel(X1, X2) 3.78/1.80 indx(X1, X2) -> n__indx(X1, X2) 3.78/1.80 from(X) -> n__from(X) 3.78/1.80 activate(n__s(X)) -> s(X) 3.78/1.80 activate(n__dbl(X)) -> dbl(activate(X)) 3.78/1.80 activate(n__dbls(X)) -> dbls(activate(X)) 3.78/1.80 activate(n__sel(X1, X2)) -> sel(activate(X1), activate(X2)) 3.78/1.80 activate(n__indx(X1, X2)) -> indx(activate(X1), X2) 3.78/1.80 activate(n__from(X)) -> from(X) 3.78/1.80 activate(X) -> X 3.78/1.80 3.78/1.80 S is empty. 3.78/1.80 Rewrite Strategy: FULL 3.78/1.80 ---------------------------------------- 3.78/1.80 3.78/1.80 (9) DecreasingLoopProof (FINISHED) 3.78/1.80 The following loop(s) give(s) rise to the lower bound EXP: 3.78/1.80 3.78/1.80 The rewrite sequence 3.78/1.80 3.78/1.80 activate(n__from(X)) ->^+ cons(activate(X), n__from(n__s(activate(X)))) 3.78/1.80 3.78/1.80 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.78/1.80 3.78/1.80 The pumping substitution is [X / n__from(X)]. 3.78/1.80 3.78/1.80 The result substitution is [ ]. 3.78/1.80 3.78/1.80 3.78/1.80 3.78/1.80 The rewrite sequence 3.78/1.80 3.78/1.80 activate(n__from(X)) ->^+ cons(activate(X), n__from(n__s(activate(X)))) 3.78/1.80 3.78/1.80 gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0,0]. 3.78/1.80 3.78/1.80 The pumping substitution is [X / n__from(X)]. 3.78/1.80 3.78/1.80 The result substitution is [ ]. 3.78/1.80 3.78/1.80 3.78/1.80 3.78/1.80 3.78/1.80 ---------------------------------------- 3.78/1.80 3.78/1.80 (10) 3.78/1.80 BOUNDS(EXP, INF) 3.87/1.90 EOF