25.81/9.51 WORST_CASE(Omega(n^1), O(n^1)) 25.81/9.52 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 25.81/9.52 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 25.81/9.52 25.81/9.52 25.81/9.52 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 25.81/9.52 25.81/9.52 (0) CpxTRS 25.81/9.52 (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] 25.81/9.52 (2) CpxTRS 25.81/9.52 (3) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] 25.81/9.52 (4) CpxTRS 25.81/9.52 (5) CpxTrsMatchBoundsTAProof [FINISHED, 71 ms] 25.81/9.52 (6) BOUNDS(1, n^1) 25.81/9.52 (7) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] 25.81/9.52 (8) CpxTRS 25.81/9.52 (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 25.81/9.52 (10) typed CpxTrs 25.81/9.52 (11) OrderProof [LOWER BOUND(ID), 0 ms] 25.81/9.52 (12) typed CpxTrs 25.81/9.52 (13) RewriteLemmaProof [LOWER BOUND(ID), 453 ms] 25.81/9.52 (14) BEST 25.81/9.52 (15) proven lower bound 25.81/9.52 (16) LowerBoundPropagationProof [FINISHED, 0 ms] 25.81/9.52 (17) BOUNDS(n^1, INF) 25.81/9.52 (18) typed CpxTrs 25.81/9.52 (19) RewriteLemmaProof [LOWER BOUND(ID), 97 ms] 25.81/9.52 (20) typed CpxTrs 25.81/9.52 (21) RewriteLemmaProof [LOWER BOUND(ID), 61 ms] 25.81/9.52 (22) typed CpxTrs 25.81/9.52 (23) RewriteLemmaProof [LOWER BOUND(ID), 97 ms] 25.81/9.52 (24) typed CpxTrs 25.81/9.52 (25) RewriteLemmaProof [LOWER BOUND(ID), 41 ms] 25.81/9.52 (26) typed CpxTrs 25.81/9.52 25.81/9.52 25.81/9.52 ---------------------------------------- 25.81/9.52 25.81/9.52 (0) 25.81/9.52 Obligation: 25.81/9.52 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 25.81/9.52 25.81/9.52 25.81/9.52 The TRS R consists of the following rules: 25.81/9.52 25.81/9.52 active(f(X)) -> mark(cons(X, f(g(X)))) 25.81/9.52 active(g(0)) -> mark(s(0)) 25.81/9.52 active(g(s(X))) -> mark(s(s(g(X)))) 25.81/9.52 active(sel(0, cons(X, Y))) -> mark(X) 25.81/9.52 active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z)) 25.81/9.52 active(f(X)) -> f(active(X)) 25.81/9.52 active(cons(X1, X2)) -> cons(active(X1), X2) 25.81/9.52 active(g(X)) -> g(active(X)) 25.81/9.52 active(s(X)) -> s(active(X)) 25.81/9.52 active(sel(X1, X2)) -> sel(active(X1), X2) 25.81/9.52 active(sel(X1, X2)) -> sel(X1, active(X2)) 25.81/9.52 f(mark(X)) -> mark(f(X)) 25.81/9.52 cons(mark(X1), X2) -> mark(cons(X1, X2)) 25.81/9.52 g(mark(X)) -> mark(g(X)) 25.81/9.52 s(mark(X)) -> mark(s(X)) 25.81/9.52 sel(mark(X1), X2) -> mark(sel(X1, X2)) 25.81/9.52 sel(X1, mark(X2)) -> mark(sel(X1, X2)) 25.81/9.52 proper(f(X)) -> f(proper(X)) 25.81/9.52 proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) 25.81/9.52 proper(g(X)) -> g(proper(X)) 25.81/9.52 proper(0) -> ok(0) 25.81/9.52 proper(s(X)) -> s(proper(X)) 25.81/9.52 proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) 25.81/9.52 f(ok(X)) -> ok(f(X)) 25.81/9.52 cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) 25.81/9.52 g(ok(X)) -> ok(g(X)) 25.81/9.52 s(ok(X)) -> ok(s(X)) 25.81/9.52 sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) 25.81/9.52 top(mark(X)) -> top(proper(X)) 25.81/9.52 top(ok(X)) -> top(active(X)) 25.81/9.52 25.81/9.52 S is empty. 25.81/9.52 Rewrite Strategy: FULL 25.81/9.52 ---------------------------------------- 25.81/9.52 25.81/9.52 (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) 25.81/9.52 The following defined symbols can occur below the 0th argument of top: proper, active 25.81/9.52 The following defined symbols can occur below the 0th argument of proper: proper, active 25.81/9.52 The following defined symbols can occur below the 0th argument of active: proper, active 25.81/9.52 25.81/9.52 Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: 25.81/9.52 active(f(X)) -> mark(cons(X, f(g(X)))) 25.81/9.52 active(g(0)) -> mark(s(0)) 25.81/9.52 active(g(s(X))) -> mark(s(s(g(X)))) 25.81/9.52 active(sel(0, cons(X, Y))) -> mark(X) 25.81/9.52 active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z)) 25.81/9.52 active(f(X)) -> f(active(X)) 25.81/9.52 active(cons(X1, X2)) -> cons(active(X1), X2) 25.81/9.52 active(g(X)) -> g(active(X)) 25.81/9.52 active(s(X)) -> s(active(X)) 25.81/9.52 active(sel(X1, X2)) -> sel(active(X1), X2) 25.81/9.52 active(sel(X1, X2)) -> sel(X1, active(X2)) 25.81/9.52 proper(f(X)) -> f(proper(X)) 25.81/9.52 proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) 25.81/9.52 proper(g(X)) -> g(proper(X)) 25.81/9.52 proper(s(X)) -> s(proper(X)) 25.81/9.52 proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) 25.81/9.52 25.81/9.52 ---------------------------------------- 25.81/9.52 25.81/9.52 (2) 25.81/9.52 Obligation: 25.81/9.52 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). 25.81/9.52 25.81/9.52 25.81/9.52 The TRS R consists of the following rules: 25.81/9.52 25.81/9.52 f(mark(X)) -> mark(f(X)) 25.81/9.52 cons(mark(X1), X2) -> mark(cons(X1, X2)) 25.81/9.52 g(mark(X)) -> mark(g(X)) 25.81/9.52 s(mark(X)) -> mark(s(X)) 25.81/9.52 sel(mark(X1), X2) -> mark(sel(X1, X2)) 25.81/9.52 sel(X1, mark(X2)) -> mark(sel(X1, X2)) 25.81/9.52 proper(0) -> ok(0) 25.81/9.52 f(ok(X)) -> ok(f(X)) 25.81/9.52 cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) 25.81/9.52 g(ok(X)) -> ok(g(X)) 25.81/9.52 s(ok(X)) -> ok(s(X)) 25.81/9.52 sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) 25.81/9.52 top(mark(X)) -> top(proper(X)) 25.81/9.52 top(ok(X)) -> top(active(X)) 25.81/9.52 25.81/9.52 S is empty. 25.81/9.52 Rewrite Strategy: FULL 25.81/9.52 ---------------------------------------- 25.81/9.52 25.81/9.52 (3) RelTrsToTrsProof (UPPER BOUND(ID)) 25.81/9.52 transformed relative TRS to TRS 25.81/9.52 ---------------------------------------- 25.81/9.52 25.81/9.52 (4) 25.81/9.52 Obligation: 25.81/9.52 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). 25.81/9.52 25.81/9.52 25.81/9.52 The TRS R consists of the following rules: 25.81/9.52 25.81/9.52 f(mark(X)) -> mark(f(X)) 25.81/9.52 cons(mark(X1), X2) -> mark(cons(X1, X2)) 25.81/9.52 g(mark(X)) -> mark(g(X)) 25.81/9.52 s(mark(X)) -> mark(s(X)) 25.81/9.52 sel(mark(X1), X2) -> mark(sel(X1, X2)) 25.81/9.52 sel(X1, mark(X2)) -> mark(sel(X1, X2)) 25.81/9.52 proper(0) -> ok(0) 25.81/9.52 f(ok(X)) -> ok(f(X)) 25.81/9.52 cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) 25.81/9.52 g(ok(X)) -> ok(g(X)) 25.81/9.52 s(ok(X)) -> ok(s(X)) 25.81/9.52 sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) 25.81/9.52 top(mark(X)) -> top(proper(X)) 25.81/9.52 top(ok(X)) -> top(active(X)) 25.81/9.52 25.81/9.52 S is empty. 25.81/9.52 Rewrite Strategy: FULL 25.81/9.52 ---------------------------------------- 25.81/9.52 25.81/9.52 (5) CpxTrsMatchBoundsTAProof (FINISHED) 25.81/9.52 A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. 25.81/9.52 25.81/9.52 The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: 25.81/9.52 final states : [1, 2, 3, 4, 5, 6, 7] 25.81/9.52 transitions: 25.81/9.52 mark0(0) -> 0 25.81/9.52 00() -> 0 25.81/9.52 ok0(0) -> 0 25.81/9.52 active0(0) -> 0 25.81/9.52 f0(0) -> 1 25.81/9.52 cons0(0, 0) -> 2 25.81/9.52 g0(0) -> 3 25.81/9.52 s0(0) -> 4 25.81/9.52 sel0(0, 0) -> 5 25.81/9.52 proper0(0) -> 6 25.81/9.52 top0(0) -> 7 25.81/9.52 f1(0) -> 8 25.81/9.52 mark1(8) -> 1 25.81/9.52 cons1(0, 0) -> 9 25.81/9.52 mark1(9) -> 2 25.81/9.52 g1(0) -> 10 25.81/9.52 mark1(10) -> 3 25.81/9.52 s1(0) -> 11 25.81/9.52 mark1(11) -> 4 25.81/9.52 sel1(0, 0) -> 12 25.81/9.52 mark1(12) -> 5 25.81/9.52 01() -> 13 25.81/9.52 ok1(13) -> 6 25.81/9.52 f1(0) -> 14 25.81/9.52 ok1(14) -> 1 25.81/9.52 cons1(0, 0) -> 15 25.81/9.52 ok1(15) -> 2 25.81/9.52 g1(0) -> 16 25.81/9.52 ok1(16) -> 3 25.81/9.52 s1(0) -> 17 25.81/9.52 ok1(17) -> 4 25.81/9.52 sel1(0, 0) -> 18 25.81/9.52 ok1(18) -> 5 25.81/9.52 proper1(0) -> 19 25.81/9.52 top1(19) -> 7 25.81/9.52 active1(0) -> 20 25.81/9.52 top1(20) -> 7 25.81/9.52 mark1(8) -> 8 25.81/9.52 mark1(8) -> 14 25.81/9.52 mark1(9) -> 9 25.81/9.52 mark1(9) -> 15 25.81/9.52 mark1(10) -> 10 25.81/9.52 mark1(10) -> 16 25.81/9.52 mark1(11) -> 11 25.81/9.52 mark1(11) -> 17 25.81/9.52 mark1(12) -> 12 25.81/9.52 mark1(12) -> 18 25.81/9.52 ok1(13) -> 19 25.81/9.52 ok1(14) -> 8 25.81/9.52 ok1(14) -> 14 25.81/9.52 ok1(15) -> 9 25.81/9.52 ok1(15) -> 15 25.81/9.52 ok1(16) -> 10 25.81/9.52 ok1(16) -> 16 25.81/9.52 ok1(17) -> 11 25.81/9.52 ok1(17) -> 17 25.81/9.52 ok1(18) -> 12 25.81/9.52 ok1(18) -> 18 25.81/9.52 active2(13) -> 21 25.81/9.52 top2(21) -> 7 25.81/9.52 25.81/9.52 ---------------------------------------- 25.81/9.52 25.81/9.52 (6) 25.81/9.52 BOUNDS(1, n^1) 25.81/9.52 25.81/9.52 ---------------------------------------- 25.81/9.52 25.81/9.52 (7) RenamingProof (BOTH BOUNDS(ID, ID)) 25.81/9.52 Renamed function symbols to avoid clashes with predefined symbol. 25.81/9.52 ---------------------------------------- 25.81/9.52 25.81/9.52 (8) 25.81/9.52 Obligation: 25.81/9.52 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 25.81/9.52 25.81/9.52 25.81/9.52 The TRS R consists of the following rules: 25.81/9.52 25.81/9.52 active(f(X)) -> mark(cons(X, f(g(X)))) 25.81/9.52 active(g(0')) -> mark(s(0')) 25.81/9.52 active(g(s(X))) -> mark(s(s(g(X)))) 25.81/9.52 active(sel(0', cons(X, Y))) -> mark(X) 25.81/9.52 active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z)) 25.81/9.52 active(f(X)) -> f(active(X)) 25.81/9.52 active(cons(X1, X2)) -> cons(active(X1), X2) 25.81/9.52 active(g(X)) -> g(active(X)) 25.81/9.52 active(s(X)) -> s(active(X)) 25.81/9.52 active(sel(X1, X2)) -> sel(active(X1), X2) 25.81/9.52 active(sel(X1, X2)) -> sel(X1, active(X2)) 25.81/9.52 f(mark(X)) -> mark(f(X)) 25.81/9.52 cons(mark(X1), X2) -> mark(cons(X1, X2)) 25.81/9.52 g(mark(X)) -> mark(g(X)) 25.81/9.52 s(mark(X)) -> mark(s(X)) 25.81/9.52 sel(mark(X1), X2) -> mark(sel(X1, X2)) 25.81/9.52 sel(X1, mark(X2)) -> mark(sel(X1, X2)) 25.81/9.52 proper(f(X)) -> f(proper(X)) 25.81/9.52 proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) 25.81/9.52 proper(g(X)) -> g(proper(X)) 25.81/9.52 proper(0') -> ok(0') 25.81/9.52 proper(s(X)) -> s(proper(X)) 25.81/9.52 proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) 25.81/9.52 f(ok(X)) -> ok(f(X)) 25.81/9.52 cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) 25.81/9.52 g(ok(X)) -> ok(g(X)) 25.81/9.52 s(ok(X)) -> ok(s(X)) 25.81/9.52 sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) 25.81/9.52 top(mark(X)) -> top(proper(X)) 25.81/9.52 top(ok(X)) -> top(active(X)) 25.81/9.52 25.81/9.52 S is empty. 25.81/9.52 Rewrite Strategy: FULL 25.81/9.52 ---------------------------------------- 25.81/9.52 25.81/9.52 (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 25.81/9.52 Infered types. 25.81/9.52 ---------------------------------------- 25.81/9.52 25.81/9.52 (10) 25.81/9.52 Obligation: 25.81/9.52 TRS: 25.81/9.52 Rules: 25.81/9.52 active(f(X)) -> mark(cons(X, f(g(X)))) 25.81/9.52 active(g(0')) -> mark(s(0')) 25.81/9.52 active(g(s(X))) -> mark(s(s(g(X)))) 25.81/9.52 active(sel(0', cons(X, Y))) -> mark(X) 25.81/9.52 active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z)) 25.81/9.52 active(f(X)) -> f(active(X)) 25.81/9.52 active(cons(X1, X2)) -> cons(active(X1), X2) 25.81/9.52 active(g(X)) -> g(active(X)) 25.81/9.52 active(s(X)) -> s(active(X)) 25.81/9.52 active(sel(X1, X2)) -> sel(active(X1), X2) 25.81/9.52 active(sel(X1, X2)) -> sel(X1, active(X2)) 25.81/9.52 f(mark(X)) -> mark(f(X)) 25.81/9.52 cons(mark(X1), X2) -> mark(cons(X1, X2)) 25.81/9.52 g(mark(X)) -> mark(g(X)) 25.81/9.52 s(mark(X)) -> mark(s(X)) 25.81/9.52 sel(mark(X1), X2) -> mark(sel(X1, X2)) 25.81/9.52 sel(X1, mark(X2)) -> mark(sel(X1, X2)) 25.81/9.52 proper(f(X)) -> f(proper(X)) 25.81/9.52 proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) 25.81/9.52 proper(g(X)) -> g(proper(X)) 25.81/9.52 proper(0') -> ok(0') 25.81/9.52 proper(s(X)) -> s(proper(X)) 25.81/9.52 proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) 25.81/9.52 f(ok(X)) -> ok(f(X)) 25.81/9.52 cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) 25.81/9.52 g(ok(X)) -> ok(g(X)) 25.81/9.52 s(ok(X)) -> ok(s(X)) 25.81/9.52 sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) 25.81/9.52 top(mark(X)) -> top(proper(X)) 25.81/9.52 top(ok(X)) -> top(active(X)) 25.81/9.52 25.81/9.52 Types: 25.81/9.52 active :: mark:0':ok -> mark:0':ok 25.81/9.52 f :: mark:0':ok -> mark:0':ok 25.81/9.52 mark :: mark:0':ok -> mark:0':ok 25.81/9.52 cons :: mark:0':ok -> mark:0':ok -> mark:0':ok 25.81/9.52 g :: mark:0':ok -> mark:0':ok 25.81/9.52 0' :: mark:0':ok 25.81/9.52 s :: mark:0':ok -> mark:0':ok 25.81/9.52 sel :: mark:0':ok -> mark:0':ok -> mark:0':ok 25.81/9.52 proper :: mark:0':ok -> mark:0':ok 25.81/9.52 ok :: mark:0':ok -> mark:0':ok 25.81/9.52 top :: mark:0':ok -> top 25.81/9.52 hole_mark:0':ok1_0 :: mark:0':ok 25.81/9.52 hole_top2_0 :: top 25.81/9.52 gen_mark:0':ok3_0 :: Nat -> mark:0':ok 25.81/9.52 25.81/9.52 ---------------------------------------- 25.81/9.52 25.81/9.52 (11) OrderProof (LOWER BOUND(ID)) 25.81/9.52 Heuristically decided to analyse the following defined symbols: 25.81/9.52 active, cons, f, g, s, sel, proper, top 25.81/9.52 25.81/9.52 They will be analysed ascendingly in the following order: 25.81/9.52 cons < active 25.81/9.52 f < active 25.81/9.52 g < active 25.81/9.52 s < active 25.81/9.52 sel < active 25.81/9.52 active < top 25.81/9.52 cons < proper 25.81/9.52 f < proper 25.81/9.52 g < proper 25.81/9.52 s < proper 25.81/9.52 sel < proper 25.81/9.52 proper < top 25.81/9.52 25.81/9.52 ---------------------------------------- 25.81/9.52 25.81/9.52 (12) 25.81/9.52 Obligation: 25.81/9.52 TRS: 25.81/9.52 Rules: 25.81/9.52 active(f(X)) -> mark(cons(X, f(g(X)))) 25.81/9.52 active(g(0')) -> mark(s(0')) 25.81/9.52 active(g(s(X))) -> mark(s(s(g(X)))) 25.81/9.52 active(sel(0', cons(X, Y))) -> mark(X) 25.81/9.52 active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z)) 25.81/9.52 active(f(X)) -> f(active(X)) 25.81/9.52 active(cons(X1, X2)) -> cons(active(X1), X2) 25.81/9.52 active(g(X)) -> g(active(X)) 25.81/9.52 active(s(X)) -> s(active(X)) 25.81/9.52 active(sel(X1, X2)) -> sel(active(X1), X2) 25.81/9.52 active(sel(X1, X2)) -> sel(X1, active(X2)) 25.81/9.52 f(mark(X)) -> mark(f(X)) 25.81/9.52 cons(mark(X1), X2) -> mark(cons(X1, X2)) 25.81/9.52 g(mark(X)) -> mark(g(X)) 25.81/9.52 s(mark(X)) -> mark(s(X)) 25.81/9.52 sel(mark(X1), X2) -> mark(sel(X1, X2)) 25.81/9.52 sel(X1, mark(X2)) -> mark(sel(X1, X2)) 25.81/9.52 proper(f(X)) -> f(proper(X)) 25.81/9.52 proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) 25.81/9.52 proper(g(X)) -> g(proper(X)) 25.81/9.52 proper(0') -> ok(0') 25.81/9.52 proper(s(X)) -> s(proper(X)) 25.81/9.52 proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) 25.81/9.52 f(ok(X)) -> ok(f(X)) 25.81/9.52 cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) 25.81/9.52 g(ok(X)) -> ok(g(X)) 25.81/9.52 s(ok(X)) -> ok(s(X)) 25.81/9.52 sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) 25.81/9.52 top(mark(X)) -> top(proper(X)) 25.81/9.52 top(ok(X)) -> top(active(X)) 25.81/9.52 25.81/9.52 Types: 25.81/9.52 active :: mark:0':ok -> mark:0':ok 25.81/9.52 f :: mark:0':ok -> mark:0':ok 25.81/9.52 mark :: mark:0':ok -> mark:0':ok 25.81/9.52 cons :: mark:0':ok -> mark:0':ok -> mark:0':ok 25.81/9.52 g :: mark:0':ok -> mark:0':ok 25.81/9.52 0' :: mark:0':ok 25.81/9.52 s :: mark:0':ok -> mark:0':ok 25.81/9.52 sel :: mark:0':ok -> mark:0':ok -> mark:0':ok 25.81/9.52 proper :: mark:0':ok -> mark:0':ok 25.81/9.52 ok :: mark:0':ok -> mark:0':ok 25.81/9.52 top :: mark:0':ok -> top 25.81/9.52 hole_mark:0':ok1_0 :: mark:0':ok 25.81/9.52 hole_top2_0 :: top 25.81/9.52 gen_mark:0':ok3_0 :: Nat -> mark:0':ok 25.81/9.52 25.81/9.52 25.81/9.52 Generator Equations: 25.81/9.52 gen_mark:0':ok3_0(0) <=> 0' 25.81/9.52 gen_mark:0':ok3_0(+(x, 1)) <=> mark(gen_mark:0':ok3_0(x)) 25.81/9.52 25.81/9.52 25.81/9.52 The following defined symbols remain to be analysed: 25.81/9.52 cons, active, f, g, s, sel, proper, top 25.81/9.52 25.81/9.52 They will be analysed ascendingly in the following order: 25.81/9.52 cons < active 25.81/9.52 f < active 25.81/9.52 g < active 25.81/9.52 s < active 25.81/9.52 sel < active 25.81/9.52 active < top 25.81/9.52 cons < proper 25.81/9.52 f < proper 25.81/9.52 g < proper 25.81/9.52 s < proper 25.81/9.52 sel < proper 25.81/9.52 proper < top 25.81/9.52 25.81/9.52 ---------------------------------------- 25.81/9.52 25.81/9.52 (13) RewriteLemmaProof (LOWER BOUND(ID)) 25.81/9.52 Proved the following rewrite lemma: 25.81/9.52 cons(gen_mark:0':ok3_0(+(1, n5_0)), gen_mark:0':ok3_0(b)) -> *4_0, rt in Omega(n5_0) 25.81/9.52 25.81/9.52 Induction Base: 25.81/9.52 cons(gen_mark:0':ok3_0(+(1, 0)), gen_mark:0':ok3_0(b)) 25.81/9.52 25.81/9.52 Induction Step: 25.81/9.52 cons(gen_mark:0':ok3_0(+(1, +(n5_0, 1))), gen_mark:0':ok3_0(b)) ->_R^Omega(1) 25.81/9.52 mark(cons(gen_mark:0':ok3_0(+(1, n5_0)), gen_mark:0':ok3_0(b))) ->_IH 25.81/9.52 mark(*4_0) 25.81/9.52 25.81/9.52 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 25.81/9.52 ---------------------------------------- 25.81/9.52 25.81/9.52 (14) 25.81/9.52 Complex Obligation (BEST) 25.81/9.52 25.81/9.52 ---------------------------------------- 25.81/9.52 25.81/9.52 (15) 25.81/9.52 Obligation: 25.81/9.52 Proved the lower bound n^1 for the following obligation: 25.81/9.52 25.81/9.52 TRS: 25.81/9.52 Rules: 25.81/9.52 active(f(X)) -> mark(cons(X, f(g(X)))) 25.81/9.52 active(g(0')) -> mark(s(0')) 25.81/9.52 active(g(s(X))) -> mark(s(s(g(X)))) 25.81/9.52 active(sel(0', cons(X, Y))) -> mark(X) 25.81/9.52 active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z)) 25.81/9.52 active(f(X)) -> f(active(X)) 25.81/9.52 active(cons(X1, X2)) -> cons(active(X1), X2) 25.81/9.52 active(g(X)) -> g(active(X)) 25.81/9.52 active(s(X)) -> s(active(X)) 25.81/9.52 active(sel(X1, X2)) -> sel(active(X1), X2) 25.81/9.52 active(sel(X1, X2)) -> sel(X1, active(X2)) 25.81/9.52 f(mark(X)) -> mark(f(X)) 25.81/9.52 cons(mark(X1), X2) -> mark(cons(X1, X2)) 25.81/9.52 g(mark(X)) -> mark(g(X)) 25.81/9.52 s(mark(X)) -> mark(s(X)) 25.81/9.52 sel(mark(X1), X2) -> mark(sel(X1, X2)) 25.81/9.52 sel(X1, mark(X2)) -> mark(sel(X1, X2)) 25.81/9.52 proper(f(X)) -> f(proper(X)) 25.81/9.52 proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) 25.81/9.52 proper(g(X)) -> g(proper(X)) 25.81/9.52 proper(0') -> ok(0') 25.81/9.52 proper(s(X)) -> s(proper(X)) 25.81/9.52 proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) 25.81/9.52 f(ok(X)) -> ok(f(X)) 25.81/9.52 cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) 25.81/9.52 g(ok(X)) -> ok(g(X)) 25.81/9.52 s(ok(X)) -> ok(s(X)) 25.81/9.52 sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) 25.81/9.52 top(mark(X)) -> top(proper(X)) 25.81/9.52 top(ok(X)) -> top(active(X)) 25.81/9.52 25.81/9.52 Types: 25.81/9.52 active :: mark:0':ok -> mark:0':ok 25.81/9.52 f :: mark:0':ok -> mark:0':ok 25.81/9.52 mark :: mark:0':ok -> mark:0':ok 25.81/9.52 cons :: mark:0':ok -> mark:0':ok -> mark:0':ok 25.81/9.52 g :: mark:0':ok -> mark:0':ok 25.81/9.52 0' :: mark:0':ok 25.81/9.52 s :: mark:0':ok -> mark:0':ok 25.81/9.52 sel :: mark:0':ok -> mark:0':ok -> mark:0':ok 25.81/9.52 proper :: mark:0':ok -> mark:0':ok 25.81/9.52 ok :: mark:0':ok -> mark:0':ok 25.81/9.52 top :: mark:0':ok -> top 25.81/9.52 hole_mark:0':ok1_0 :: mark:0':ok 25.81/9.52 hole_top2_0 :: top 25.81/9.52 gen_mark:0':ok3_0 :: Nat -> mark:0':ok 25.81/9.52 25.81/9.52 25.81/9.52 Generator Equations: 25.81/9.52 gen_mark:0':ok3_0(0) <=> 0' 25.81/9.52 gen_mark:0':ok3_0(+(x, 1)) <=> mark(gen_mark:0':ok3_0(x)) 25.81/9.52 25.81/9.52 25.81/9.52 The following defined symbols remain to be analysed: 25.81/9.52 cons, active, f, g, s, sel, proper, top 25.81/9.52 25.81/9.52 They will be analysed ascendingly in the following order: 25.81/9.52 cons < active 25.81/9.52 f < active 25.81/9.52 g < active 25.81/9.52 s < active 25.81/9.52 sel < active 25.81/9.52 active < top 25.81/9.52 cons < proper 25.81/9.52 f < proper 25.81/9.52 g < proper 25.81/9.52 s < proper 25.81/9.52 sel < proper 25.81/9.52 proper < top 25.81/9.52 25.81/9.52 ---------------------------------------- 25.81/9.52 25.81/9.52 (16) LowerBoundPropagationProof (FINISHED) 25.81/9.52 Propagated lower bound. 25.81/9.52 ---------------------------------------- 25.81/9.52 25.81/9.52 (17) 25.81/9.52 BOUNDS(n^1, INF) 25.81/9.52 25.81/9.52 ---------------------------------------- 25.81/9.52 25.81/9.52 (18) 25.81/9.52 Obligation: 25.81/9.52 TRS: 25.81/9.52 Rules: 25.81/9.52 active(f(X)) -> mark(cons(X, f(g(X)))) 25.81/9.52 active(g(0')) -> mark(s(0')) 25.81/9.52 active(g(s(X))) -> mark(s(s(g(X)))) 25.81/9.52 active(sel(0', cons(X, Y))) -> mark(X) 25.81/9.52 active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z)) 25.81/9.52 active(f(X)) -> f(active(X)) 25.81/9.52 active(cons(X1, X2)) -> cons(active(X1), X2) 25.81/9.52 active(g(X)) -> g(active(X)) 25.81/9.52 active(s(X)) -> s(active(X)) 25.81/9.52 active(sel(X1, X2)) -> sel(active(X1), X2) 25.81/9.52 active(sel(X1, X2)) -> sel(X1, active(X2)) 25.81/9.52 f(mark(X)) -> mark(f(X)) 25.81/9.52 cons(mark(X1), X2) -> mark(cons(X1, X2)) 25.81/9.52 g(mark(X)) -> mark(g(X)) 25.81/9.52 s(mark(X)) -> mark(s(X)) 25.81/9.52 sel(mark(X1), X2) -> mark(sel(X1, X2)) 25.81/9.52 sel(X1, mark(X2)) -> mark(sel(X1, X2)) 25.81/9.52 proper(f(X)) -> f(proper(X)) 25.81/9.52 proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) 25.81/9.52 proper(g(X)) -> g(proper(X)) 25.81/9.52 proper(0') -> ok(0') 25.81/9.52 proper(s(X)) -> s(proper(X)) 25.81/9.52 proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) 25.81/9.52 f(ok(X)) -> ok(f(X)) 25.81/9.52 cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) 25.81/9.52 g(ok(X)) -> ok(g(X)) 25.81/9.52 s(ok(X)) -> ok(s(X)) 25.81/9.52 sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) 25.81/9.52 top(mark(X)) -> top(proper(X)) 25.81/9.52 top(ok(X)) -> top(active(X)) 25.81/9.52 25.81/9.52 Types: 25.81/9.52 active :: mark:0':ok -> mark:0':ok 25.81/9.52 f :: mark:0':ok -> mark:0':ok 25.81/9.52 mark :: mark:0':ok -> mark:0':ok 25.81/9.52 cons :: mark:0':ok -> mark:0':ok -> mark:0':ok 25.81/9.52 g :: mark:0':ok -> mark:0':ok 25.81/9.52 0' :: mark:0':ok 25.81/9.52 s :: mark:0':ok -> mark:0':ok 25.81/9.52 sel :: mark:0':ok -> mark:0':ok -> mark:0':ok 25.81/9.52 proper :: mark:0':ok -> mark:0':ok 25.81/9.52 ok :: mark:0':ok -> mark:0':ok 25.81/9.52 top :: mark:0':ok -> top 25.81/9.52 hole_mark:0':ok1_0 :: mark:0':ok 25.81/9.52 hole_top2_0 :: top 25.81/9.52 gen_mark:0':ok3_0 :: Nat -> mark:0':ok 25.81/9.52 25.81/9.52 25.81/9.52 Lemmas: 25.81/9.52 cons(gen_mark:0':ok3_0(+(1, n5_0)), gen_mark:0':ok3_0(b)) -> *4_0, rt in Omega(n5_0) 25.81/9.52 25.81/9.52 25.81/9.52 Generator Equations: 25.81/9.52 gen_mark:0':ok3_0(0) <=> 0' 25.81/9.52 gen_mark:0':ok3_0(+(x, 1)) <=> mark(gen_mark:0':ok3_0(x)) 25.81/9.52 25.81/9.52 25.81/9.52 The following defined symbols remain to be analysed: 25.81/9.52 f, active, g, s, sel, proper, top 25.81/9.52 25.81/9.52 They will be analysed ascendingly in the following order: 25.81/9.52 f < active 25.81/9.52 g < active 25.81/9.52 s < active 25.81/9.52 sel < active 25.81/9.52 active < top 25.81/9.52 f < proper 25.81/9.52 g < proper 25.81/9.52 s < proper 25.81/9.52 sel < proper 25.81/9.52 proper < top 25.81/9.52 25.81/9.52 ---------------------------------------- 25.81/9.52 25.81/9.52 (19) RewriteLemmaProof (LOWER BOUND(ID)) 25.81/9.52 Proved the following rewrite lemma: 25.81/9.52 f(gen_mark:0':ok3_0(+(1, n860_0))) -> *4_0, rt in Omega(n860_0) 25.81/9.52 25.81/9.52 Induction Base: 25.81/9.52 f(gen_mark:0':ok3_0(+(1, 0))) 25.81/9.52 25.81/9.52 Induction Step: 25.81/9.52 f(gen_mark:0':ok3_0(+(1, +(n860_0, 1)))) ->_R^Omega(1) 25.81/9.52 mark(f(gen_mark:0':ok3_0(+(1, n860_0)))) ->_IH 25.81/9.52 mark(*4_0) 25.81/9.52 25.81/9.52 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 25.81/9.52 ---------------------------------------- 25.81/9.52 25.81/9.52 (20) 25.81/9.52 Obligation: 25.81/9.52 TRS: 25.81/9.52 Rules: 25.81/9.52 active(f(X)) -> mark(cons(X, f(g(X)))) 25.81/9.52 active(g(0')) -> mark(s(0')) 25.81/9.52 active(g(s(X))) -> mark(s(s(g(X)))) 25.81/9.52 active(sel(0', cons(X, Y))) -> mark(X) 25.81/9.52 active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z)) 25.81/9.52 active(f(X)) -> f(active(X)) 25.81/9.52 active(cons(X1, X2)) -> cons(active(X1), X2) 25.81/9.52 active(g(X)) -> g(active(X)) 25.81/9.52 active(s(X)) -> s(active(X)) 25.81/9.52 active(sel(X1, X2)) -> sel(active(X1), X2) 25.81/9.52 active(sel(X1, X2)) -> sel(X1, active(X2)) 25.81/9.52 f(mark(X)) -> mark(f(X)) 25.81/9.52 cons(mark(X1), X2) -> mark(cons(X1, X2)) 25.81/9.52 g(mark(X)) -> mark(g(X)) 25.81/9.52 s(mark(X)) -> mark(s(X)) 25.81/9.52 sel(mark(X1), X2) -> mark(sel(X1, X2)) 25.81/9.52 sel(X1, mark(X2)) -> mark(sel(X1, X2)) 25.81/9.52 proper(f(X)) -> f(proper(X)) 25.81/9.52 proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) 25.81/9.52 proper(g(X)) -> g(proper(X)) 25.81/9.52 proper(0') -> ok(0') 25.81/9.52 proper(s(X)) -> s(proper(X)) 25.81/9.52 proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) 25.81/9.52 f(ok(X)) -> ok(f(X)) 25.81/9.52 cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) 25.81/9.52 g(ok(X)) -> ok(g(X)) 25.81/9.52 s(ok(X)) -> ok(s(X)) 25.81/9.52 sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) 25.81/9.52 top(mark(X)) -> top(proper(X)) 25.81/9.52 top(ok(X)) -> top(active(X)) 25.81/9.52 25.81/9.52 Types: 25.81/9.52 active :: mark:0':ok -> mark:0':ok 25.81/9.52 f :: mark:0':ok -> mark:0':ok 25.81/9.52 mark :: mark:0':ok -> mark:0':ok 25.81/9.52 cons :: mark:0':ok -> mark:0':ok -> mark:0':ok 25.81/9.52 g :: mark:0':ok -> mark:0':ok 25.81/9.52 0' :: mark:0':ok 25.81/9.52 s :: mark:0':ok -> mark:0':ok 25.81/9.52 sel :: mark:0':ok -> mark:0':ok -> mark:0':ok 25.81/9.52 proper :: mark:0':ok -> mark:0':ok 25.81/9.52 ok :: mark:0':ok -> mark:0':ok 25.81/9.52 top :: mark:0':ok -> top 25.81/9.52 hole_mark:0':ok1_0 :: mark:0':ok 25.81/9.52 hole_top2_0 :: top 25.81/9.52 gen_mark:0':ok3_0 :: Nat -> mark:0':ok 25.81/9.52 25.81/9.52 25.81/9.52 Lemmas: 25.81/9.52 cons(gen_mark:0':ok3_0(+(1, n5_0)), gen_mark:0':ok3_0(b)) -> *4_0, rt in Omega(n5_0) 25.81/9.52 f(gen_mark:0':ok3_0(+(1, n860_0))) -> *4_0, rt in Omega(n860_0) 25.81/9.52 25.81/9.52 25.81/9.52 Generator Equations: 25.81/9.52 gen_mark:0':ok3_0(0) <=> 0' 25.81/9.52 gen_mark:0':ok3_0(+(x, 1)) <=> mark(gen_mark:0':ok3_0(x)) 25.81/9.52 25.81/9.52 25.81/9.52 The following defined symbols remain to be analysed: 25.81/9.52 g, active, s, sel, proper, top 25.81/9.52 25.81/9.52 They will be analysed ascendingly in the following order: 25.81/9.52 g < active 25.81/9.52 s < active 25.81/9.52 sel < active 25.81/9.52 active < top 25.81/9.52 g < proper 25.81/9.52 s < proper 25.81/9.52 sel < proper 25.81/9.52 proper < top 25.81/9.52 25.81/9.52 ---------------------------------------- 25.81/9.52 25.81/9.52 (21) RewriteLemmaProof (LOWER BOUND(ID)) 25.81/9.52 Proved the following rewrite lemma: 25.81/9.52 g(gen_mark:0':ok3_0(+(1, n1367_0))) -> *4_0, rt in Omega(n1367_0) 25.81/9.52 25.81/9.52 Induction Base: 25.81/9.52 g(gen_mark:0':ok3_0(+(1, 0))) 25.81/9.52 25.81/9.52 Induction Step: 25.81/9.52 g(gen_mark:0':ok3_0(+(1, +(n1367_0, 1)))) ->_R^Omega(1) 25.81/9.52 mark(g(gen_mark:0':ok3_0(+(1, n1367_0)))) ->_IH 25.81/9.52 mark(*4_0) 25.81/9.52 25.81/9.52 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 25.81/9.52 ---------------------------------------- 25.81/9.52 25.81/9.52 (22) 25.81/9.52 Obligation: 25.81/9.52 TRS: 25.81/9.52 Rules: 25.81/9.52 active(f(X)) -> mark(cons(X, f(g(X)))) 25.81/9.52 active(g(0')) -> mark(s(0')) 25.81/9.52 active(g(s(X))) -> mark(s(s(g(X)))) 25.81/9.52 active(sel(0', cons(X, Y))) -> mark(X) 25.81/9.52 active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z)) 25.81/9.52 active(f(X)) -> f(active(X)) 25.81/9.52 active(cons(X1, X2)) -> cons(active(X1), X2) 25.81/9.52 active(g(X)) -> g(active(X)) 25.81/9.52 active(s(X)) -> s(active(X)) 25.81/9.52 active(sel(X1, X2)) -> sel(active(X1), X2) 25.81/9.52 active(sel(X1, X2)) -> sel(X1, active(X2)) 25.81/9.52 f(mark(X)) -> mark(f(X)) 25.81/9.52 cons(mark(X1), X2) -> mark(cons(X1, X2)) 25.81/9.52 g(mark(X)) -> mark(g(X)) 25.81/9.52 s(mark(X)) -> mark(s(X)) 25.81/9.52 sel(mark(X1), X2) -> mark(sel(X1, X2)) 25.81/9.52 sel(X1, mark(X2)) -> mark(sel(X1, X2)) 25.81/9.52 proper(f(X)) -> f(proper(X)) 25.81/9.52 proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) 25.81/9.52 proper(g(X)) -> g(proper(X)) 25.81/9.52 proper(0') -> ok(0') 25.81/9.52 proper(s(X)) -> s(proper(X)) 25.81/9.52 proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) 25.81/9.52 f(ok(X)) -> ok(f(X)) 25.81/9.52 cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) 25.81/9.52 g(ok(X)) -> ok(g(X)) 25.81/9.52 s(ok(X)) -> ok(s(X)) 25.81/9.52 sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) 25.81/9.52 top(mark(X)) -> top(proper(X)) 25.81/9.52 top(ok(X)) -> top(active(X)) 25.81/9.52 25.81/9.52 Types: 25.81/9.52 active :: mark:0':ok -> mark:0':ok 25.81/9.52 f :: mark:0':ok -> mark:0':ok 25.81/9.52 mark :: mark:0':ok -> mark:0':ok 25.81/9.52 cons :: mark:0':ok -> mark:0':ok -> mark:0':ok 25.81/9.52 g :: mark:0':ok -> mark:0':ok 25.81/9.52 0' :: mark:0':ok 25.81/9.52 s :: mark:0':ok -> mark:0':ok 25.81/9.52 sel :: mark:0':ok -> mark:0':ok -> mark:0':ok 25.81/9.52 proper :: mark:0':ok -> mark:0':ok 25.81/9.52 ok :: mark:0':ok -> mark:0':ok 25.81/9.52 top :: mark:0':ok -> top 25.81/9.52 hole_mark:0':ok1_0 :: mark:0':ok 25.81/9.52 hole_top2_0 :: top 25.81/9.52 gen_mark:0':ok3_0 :: Nat -> mark:0':ok 25.81/9.52 25.81/9.52 25.81/9.52 Lemmas: 25.81/9.52 cons(gen_mark:0':ok3_0(+(1, n5_0)), gen_mark:0':ok3_0(b)) -> *4_0, rt in Omega(n5_0) 25.81/9.52 f(gen_mark:0':ok3_0(+(1, n860_0))) -> *4_0, rt in Omega(n860_0) 25.81/9.52 g(gen_mark:0':ok3_0(+(1, n1367_0))) -> *4_0, rt in Omega(n1367_0) 25.81/9.52 25.81/9.52 25.81/9.52 Generator Equations: 25.81/9.52 gen_mark:0':ok3_0(0) <=> 0' 25.81/9.52 gen_mark:0':ok3_0(+(x, 1)) <=> mark(gen_mark:0':ok3_0(x)) 25.81/9.52 25.81/9.52 25.81/9.52 The following defined symbols remain to be analysed: 25.81/9.52 s, active, sel, proper, top 25.81/9.52 25.81/9.52 They will be analysed ascendingly in the following order: 25.81/9.52 s < active 25.81/9.52 sel < active 25.81/9.52 active < top 25.81/9.52 s < proper 25.81/9.52 sel < proper 25.81/9.52 proper < top 25.81/9.52 25.81/9.52 ---------------------------------------- 25.81/9.52 25.81/9.52 (23) RewriteLemmaProof (LOWER BOUND(ID)) 25.81/9.52 Proved the following rewrite lemma: 25.81/9.52 s(gen_mark:0':ok3_0(+(1, n1975_0))) -> *4_0, rt in Omega(n1975_0) 25.81/9.52 25.81/9.52 Induction Base: 25.81/9.52 s(gen_mark:0':ok3_0(+(1, 0))) 25.81/9.52 25.81/9.52 Induction Step: 25.81/9.52 s(gen_mark:0':ok3_0(+(1, +(n1975_0, 1)))) ->_R^Omega(1) 25.81/9.52 mark(s(gen_mark:0':ok3_0(+(1, n1975_0)))) ->_IH 25.81/9.52 mark(*4_0) 25.81/9.52 25.81/9.52 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 25.81/9.52 ---------------------------------------- 25.81/9.52 25.81/9.52 (24) 25.81/9.52 Obligation: 25.81/9.52 TRS: 25.81/9.52 Rules: 25.81/9.52 active(f(X)) -> mark(cons(X, f(g(X)))) 25.81/9.52 active(g(0')) -> mark(s(0')) 25.81/9.52 active(g(s(X))) -> mark(s(s(g(X)))) 25.81/9.52 active(sel(0', cons(X, Y))) -> mark(X) 25.81/9.52 active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z)) 25.81/9.52 active(f(X)) -> f(active(X)) 25.81/9.52 active(cons(X1, X2)) -> cons(active(X1), X2) 25.81/9.52 active(g(X)) -> g(active(X)) 25.81/9.52 active(s(X)) -> s(active(X)) 25.81/9.52 active(sel(X1, X2)) -> sel(active(X1), X2) 25.81/9.52 active(sel(X1, X2)) -> sel(X1, active(X2)) 25.81/9.52 f(mark(X)) -> mark(f(X)) 25.81/9.52 cons(mark(X1), X2) -> mark(cons(X1, X2)) 25.81/9.52 g(mark(X)) -> mark(g(X)) 25.81/9.52 s(mark(X)) -> mark(s(X)) 25.81/9.52 sel(mark(X1), X2) -> mark(sel(X1, X2)) 25.81/9.52 sel(X1, mark(X2)) -> mark(sel(X1, X2)) 25.81/9.52 proper(f(X)) -> f(proper(X)) 25.81/9.52 proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) 25.81/9.52 proper(g(X)) -> g(proper(X)) 25.81/9.52 proper(0') -> ok(0') 25.81/9.52 proper(s(X)) -> s(proper(X)) 25.81/9.52 proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) 25.81/9.52 f(ok(X)) -> ok(f(X)) 25.81/9.52 cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) 25.81/9.52 g(ok(X)) -> ok(g(X)) 25.81/9.52 s(ok(X)) -> ok(s(X)) 25.81/9.52 sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) 25.81/9.52 top(mark(X)) -> top(proper(X)) 25.81/9.52 top(ok(X)) -> top(active(X)) 25.81/9.52 25.81/9.52 Types: 25.81/9.52 active :: mark:0':ok -> mark:0':ok 25.81/9.52 f :: mark:0':ok -> mark:0':ok 25.81/9.52 mark :: mark:0':ok -> mark:0':ok 25.81/9.52 cons :: mark:0':ok -> mark:0':ok -> mark:0':ok 25.81/9.52 g :: mark:0':ok -> mark:0':ok 25.81/9.52 0' :: mark:0':ok 25.81/9.52 s :: mark:0':ok -> mark:0':ok 25.81/9.52 sel :: mark:0':ok -> mark:0':ok -> mark:0':ok 25.81/9.52 proper :: mark:0':ok -> mark:0':ok 25.81/9.52 ok :: mark:0':ok -> mark:0':ok 25.81/9.52 top :: mark:0':ok -> top 25.81/9.52 hole_mark:0':ok1_0 :: mark:0':ok 25.81/9.52 hole_top2_0 :: top 25.81/9.52 gen_mark:0':ok3_0 :: Nat -> mark:0':ok 25.81/9.52 25.81/9.52 25.81/9.52 Lemmas: 25.81/9.52 cons(gen_mark:0':ok3_0(+(1, n5_0)), gen_mark:0':ok3_0(b)) -> *4_0, rt in Omega(n5_0) 25.81/9.52 f(gen_mark:0':ok3_0(+(1, n860_0))) -> *4_0, rt in Omega(n860_0) 25.81/9.52 g(gen_mark:0':ok3_0(+(1, n1367_0))) -> *4_0, rt in Omega(n1367_0) 25.81/9.52 s(gen_mark:0':ok3_0(+(1, n1975_0))) -> *4_0, rt in Omega(n1975_0) 25.81/9.52 25.81/9.52 25.81/9.52 Generator Equations: 25.81/9.52 gen_mark:0':ok3_0(0) <=> 0' 25.81/9.52 gen_mark:0':ok3_0(+(x, 1)) <=> mark(gen_mark:0':ok3_0(x)) 25.81/9.52 25.81/9.52 25.81/9.52 The following defined symbols remain to be analysed: 25.81/9.52 sel, active, proper, top 25.81/9.52 25.81/9.52 They will be analysed ascendingly in the following order: 25.81/9.52 sel < active 25.81/9.52 active < top 25.81/9.52 sel < proper 25.81/9.52 proper < top 25.81/9.52 25.81/9.52 ---------------------------------------- 25.81/9.52 25.81/9.52 (25) RewriteLemmaProof (LOWER BOUND(ID)) 25.81/9.52 Proved the following rewrite lemma: 25.81/9.52 sel(gen_mark:0':ok3_0(+(1, n2684_0)), gen_mark:0':ok3_0(b)) -> *4_0, rt in Omega(n2684_0) 25.81/9.52 25.81/9.52 Induction Base: 25.81/9.52 sel(gen_mark:0':ok3_0(+(1, 0)), gen_mark:0':ok3_0(b)) 25.81/9.52 25.81/9.52 Induction Step: 25.81/9.52 sel(gen_mark:0':ok3_0(+(1, +(n2684_0, 1))), gen_mark:0':ok3_0(b)) ->_R^Omega(1) 25.81/9.52 mark(sel(gen_mark:0':ok3_0(+(1, n2684_0)), gen_mark:0':ok3_0(b))) ->_IH 25.81/9.52 mark(*4_0) 25.81/9.52 25.81/9.52 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 25.81/9.52 ---------------------------------------- 25.81/9.52 25.81/9.52 (26) 25.81/9.52 Obligation: 25.81/9.52 TRS: 25.81/9.52 Rules: 25.81/9.52 active(f(X)) -> mark(cons(X, f(g(X)))) 25.81/9.52 active(g(0')) -> mark(s(0')) 25.81/9.52 active(g(s(X))) -> mark(s(s(g(X)))) 25.81/9.52 active(sel(0', cons(X, Y))) -> mark(X) 25.81/9.52 active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z)) 25.81/9.52 active(f(X)) -> f(active(X)) 25.81/9.52 active(cons(X1, X2)) -> cons(active(X1), X2) 25.81/9.52 active(g(X)) -> g(active(X)) 25.81/9.52 active(s(X)) -> s(active(X)) 25.81/9.52 active(sel(X1, X2)) -> sel(active(X1), X2) 25.81/9.52 active(sel(X1, X2)) -> sel(X1, active(X2)) 25.81/9.52 f(mark(X)) -> mark(f(X)) 25.81/9.52 cons(mark(X1), X2) -> mark(cons(X1, X2)) 25.81/9.52 g(mark(X)) -> mark(g(X)) 25.81/9.52 s(mark(X)) -> mark(s(X)) 25.81/9.52 sel(mark(X1), X2) -> mark(sel(X1, X2)) 25.81/9.52 sel(X1, mark(X2)) -> mark(sel(X1, X2)) 25.81/9.52 proper(f(X)) -> f(proper(X)) 25.81/9.52 proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) 25.81/9.52 proper(g(X)) -> g(proper(X)) 25.81/9.52 proper(0') -> ok(0') 25.81/9.52 proper(s(X)) -> s(proper(X)) 25.81/9.52 proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) 25.81/9.52 f(ok(X)) -> ok(f(X)) 25.81/9.52 cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) 25.81/9.52 g(ok(X)) -> ok(g(X)) 25.81/9.52 s(ok(X)) -> ok(s(X)) 25.81/9.52 sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) 25.81/9.52 top(mark(X)) -> top(proper(X)) 25.81/9.52 top(ok(X)) -> top(active(X)) 25.81/9.52 25.81/9.52 Types: 25.81/9.52 active :: mark:0':ok -> mark:0':ok 25.81/9.52 f :: mark:0':ok -> mark:0':ok 25.81/9.52 mark :: mark:0':ok -> mark:0':ok 25.81/9.52 cons :: mark:0':ok -> mark:0':ok -> mark:0':ok 25.81/9.52 g :: mark:0':ok -> mark:0':ok 25.81/9.52 0' :: mark:0':ok 25.81/9.52 s :: mark:0':ok -> mark:0':ok 25.81/9.52 sel :: mark:0':ok -> mark:0':ok -> mark:0':ok 25.81/9.52 proper :: mark:0':ok -> mark:0':ok 25.81/9.52 ok :: mark:0':ok -> mark:0':ok 25.81/9.52 top :: mark:0':ok -> top 25.81/9.52 hole_mark:0':ok1_0 :: mark:0':ok 25.81/9.52 hole_top2_0 :: top 25.81/9.52 gen_mark:0':ok3_0 :: Nat -> mark:0':ok 25.81/9.52 25.81/9.52 25.81/9.52 Lemmas: 25.81/9.52 cons(gen_mark:0':ok3_0(+(1, n5_0)), gen_mark:0':ok3_0(b)) -> *4_0, rt in Omega(n5_0) 25.81/9.52 f(gen_mark:0':ok3_0(+(1, n860_0))) -> *4_0, rt in Omega(n860_0) 25.81/9.52 g(gen_mark:0':ok3_0(+(1, n1367_0))) -> *4_0, rt in Omega(n1367_0) 25.81/9.52 s(gen_mark:0':ok3_0(+(1, n1975_0))) -> *4_0, rt in Omega(n1975_0) 25.81/9.52 sel(gen_mark:0':ok3_0(+(1, n2684_0)), gen_mark:0':ok3_0(b)) -> *4_0, rt in Omega(n2684_0) 25.81/9.52 25.81/9.52 25.81/9.52 Generator Equations: 25.81/9.52 gen_mark:0':ok3_0(0) <=> 0' 25.81/9.52 gen_mark:0':ok3_0(+(x, 1)) <=> mark(gen_mark:0':ok3_0(x)) 25.81/9.52 25.81/9.52 25.81/9.52 The following defined symbols remain to be analysed: 25.81/9.52 active, proper, top 25.81/9.52 25.81/9.52 They will be analysed ascendingly in the following order: 25.81/9.52 active < top 25.81/9.52 proper < top 26.03/9.56 EOF