19.78/6.27 WORST_CASE(Omega(n^1), O(n^1)) 20.03/6.29 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 20.03/6.29 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 20.03/6.29 20.03/6.29 20.03/6.29 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 20.03/6.29 20.03/6.29 (0) CpxTRS 20.03/6.29 (1) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] 20.03/6.29 (2) CpxTRS 20.03/6.29 (3) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] 20.03/6.29 (4) CpxWeightedTrs 20.03/6.29 (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 20.03/6.29 (6) CpxTypedWeightedTrs 20.03/6.29 (7) CompletionProof [UPPER BOUND(ID), 0 ms] 20.03/6.29 (8) CpxTypedWeightedCompleteTrs 20.03/6.29 (9) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] 20.03/6.29 (10) CpxTypedWeightedCompleteTrs 20.03/6.29 (11) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] 20.03/6.29 (12) CpxRNTS 20.03/6.29 (13) InliningProof [UPPER BOUND(ID), 84 ms] 20.03/6.29 (14) CpxRNTS 20.03/6.29 (15) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] 20.03/6.29 (16) CpxRNTS 20.03/6.29 (17) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] 20.03/6.29 (18) CpxRNTS 20.03/6.29 (19) ResultPropagationProof [UPPER BOUND(ID), 1 ms] 20.03/6.29 (20) CpxRNTS 20.03/6.29 (21) IntTrsBoundProof [UPPER BOUND(ID), 210 ms] 20.03/6.29 (22) CpxRNTS 20.03/6.29 (23) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] 20.03/6.29 (24) CpxRNTS 20.03/6.29 (25) ResultPropagationProof [UPPER BOUND(ID), 0 ms] 20.03/6.29 (26) CpxRNTS 20.03/6.29 (27) IntTrsBoundProof [UPPER BOUND(ID), 757 ms] 20.03/6.29 (28) CpxRNTS 20.03/6.29 (29) IntTrsBoundProof [UPPER BOUND(ID), 66 ms] 20.03/6.29 (30) CpxRNTS 20.03/6.29 (31) FinalProof [FINISHED, 0 ms] 20.03/6.29 (32) BOUNDS(1, n^1) 20.03/6.29 (33) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 20.03/6.29 (34) TRS for Loop Detection 20.03/6.29 (35) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 20.03/6.29 (36) BEST 20.03/6.29 (37) proven lower bound 20.03/6.29 (38) LowerBoundPropagationProof [FINISHED, 0 ms] 20.03/6.29 (39) BOUNDS(n^1, INF) 20.03/6.29 (40) TRS for Loop Detection 20.03/6.29 20.03/6.29 20.03/6.29 ---------------------------------------- 20.03/6.29 20.03/6.29 (0) 20.03/6.29 Obligation: 20.03/6.29 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 20.03/6.29 20.03/6.29 20.03/6.29 The TRS R consists of the following rules: 20.03/6.29 20.03/6.29 first(0, X) -> nil 20.03/6.29 first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) 20.03/6.29 from(X) -> cons(X, n__from(s(X))) 20.03/6.29 first(X1, X2) -> n__first(X1, X2) 20.03/6.29 from(X) -> n__from(X) 20.03/6.29 activate(n__first(X1, X2)) -> first(X1, X2) 20.03/6.29 activate(n__from(X)) -> from(X) 20.03/6.29 activate(X) -> X 20.03/6.29 20.03/6.29 S is empty. 20.03/6.29 Rewrite Strategy: FULL 20.03/6.29 ---------------------------------------- 20.03/6.29 20.03/6.29 (1) RcToIrcProof (BOTH BOUNDS(ID, ID)) 20.03/6.29 Converted rc-obligation to irc-obligation. 20.03/6.29 20.03/6.29 As the TRS does not nest defined symbols, we have rc = irc. 20.03/6.29 ---------------------------------------- 20.03/6.29 20.03/6.29 (2) 20.03/6.29 Obligation: 20.03/6.29 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). 20.03/6.29 20.03/6.29 20.03/6.29 The TRS R consists of the following rules: 20.03/6.29 20.03/6.29 first(0, X) -> nil 20.03/6.29 first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) 20.03/6.29 from(X) -> cons(X, n__from(s(X))) 20.03/6.29 first(X1, X2) -> n__first(X1, X2) 20.03/6.29 from(X) -> n__from(X) 20.03/6.29 activate(n__first(X1, X2)) -> first(X1, X2) 20.03/6.29 activate(n__from(X)) -> from(X) 20.03/6.29 activate(X) -> X 20.03/6.29 20.03/6.29 S is empty. 20.03/6.29 Rewrite Strategy: INNERMOST 20.03/6.29 ---------------------------------------- 20.03/6.29 20.03/6.29 (3) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) 20.03/6.29 Transformed relative TRS to weighted TRS 20.03/6.29 ---------------------------------------- 20.03/6.29 20.03/6.29 (4) 20.03/6.29 Obligation: 20.03/6.29 The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). 20.03/6.29 20.03/6.29 20.03/6.29 The TRS R consists of the following rules: 20.03/6.29 20.03/6.29 first(0, X) -> nil [1] 20.03/6.29 first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) [1] 20.03/6.29 from(X) -> cons(X, n__from(s(X))) [1] 20.03/6.29 first(X1, X2) -> n__first(X1, X2) [1] 20.03/6.29 from(X) -> n__from(X) [1] 20.03/6.29 activate(n__first(X1, X2)) -> first(X1, X2) [1] 20.03/6.29 activate(n__from(X)) -> from(X) [1] 20.03/6.29 activate(X) -> X [1] 20.03/6.29 20.03/6.29 Rewrite Strategy: INNERMOST 20.03/6.29 ---------------------------------------- 20.03/6.29 20.03/6.29 (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 20.03/6.29 Infered types. 20.03/6.29 ---------------------------------------- 20.03/6.29 20.03/6.29 (6) 20.03/6.29 Obligation: 20.03/6.29 Runtime Complexity Weighted TRS with Types. 20.03/6.29 The TRS R consists of the following rules: 20.03/6.29 20.03/6.29 first(0, X) -> nil [1] 20.03/6.29 first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) [1] 20.03/6.29 from(X) -> cons(X, n__from(s(X))) [1] 20.03/6.29 first(X1, X2) -> n__first(X1, X2) [1] 20.03/6.30 from(X) -> n__from(X) [1] 20.03/6.30 activate(n__first(X1, X2)) -> first(X1, X2) [1] 20.03/6.30 activate(n__from(X)) -> from(X) [1] 20.03/6.30 activate(X) -> X [1] 20.03/6.30 20.03/6.30 The TRS has the following type information: 20.03/6.30 first :: 0:s -> nil:cons:n__first:n__from -> nil:cons:n__first:n__from 20.03/6.30 0 :: 0:s 20.03/6.30 nil :: nil:cons:n__first:n__from 20.03/6.30 s :: 0:s -> 0:s 20.03/6.30 cons :: 0:s -> nil:cons:n__first:n__from -> nil:cons:n__first:n__from 20.03/6.30 n__first :: 0:s -> nil:cons:n__first:n__from -> nil:cons:n__first:n__from 20.03/6.30 activate :: nil:cons:n__first:n__from -> nil:cons:n__first:n__from 20.03/6.30 from :: 0:s -> nil:cons:n__first:n__from 20.03/6.30 n__from :: 0:s -> nil:cons:n__first:n__from 20.03/6.30 20.03/6.30 Rewrite Strategy: INNERMOST 20.03/6.30 ---------------------------------------- 20.03/6.30 20.03/6.30 (7) CompletionProof (UPPER BOUND(ID)) 20.03/6.30 The transformation into a RNTS is sound, since: 20.03/6.30 20.03/6.30 (a) The obligation is a constructor system where every type has a constant constructor, 20.03/6.30 20.03/6.30 (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: 20.03/6.30 20.03/6.30 first_2 20.03/6.30 from_1 20.03/6.30 activate_1 20.03/6.30 20.03/6.30 (c) The following functions are completely defined: 20.03/6.30 none 20.03/6.30 20.03/6.30 Due to the following rules being added: 20.03/6.30 none 20.03/6.30 20.03/6.30 And the following fresh constants: none 20.03/6.30 20.03/6.30 ---------------------------------------- 20.03/6.30 20.03/6.30 (8) 20.03/6.30 Obligation: 20.03/6.30 Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: 20.03/6.30 20.03/6.30 Runtime Complexity Weighted TRS with Types. 20.03/6.30 The TRS R consists of the following rules: 20.03/6.30 20.03/6.30 first(0, X) -> nil [1] 20.03/6.30 first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) [1] 20.03/6.30 from(X) -> cons(X, n__from(s(X))) [1] 20.03/6.30 first(X1, X2) -> n__first(X1, X2) [1] 20.03/6.30 from(X) -> n__from(X) [1] 20.03/6.30 activate(n__first(X1, X2)) -> first(X1, X2) [1] 20.03/6.30 activate(n__from(X)) -> from(X) [1] 20.03/6.30 activate(X) -> X [1] 20.03/6.30 20.03/6.30 The TRS has the following type information: 20.03/6.30 first :: 0:s -> nil:cons:n__first:n__from -> nil:cons:n__first:n__from 20.03/6.30 0 :: 0:s 20.03/6.30 nil :: nil:cons:n__first:n__from 20.03/6.30 s :: 0:s -> 0:s 20.03/6.30 cons :: 0:s -> nil:cons:n__first:n__from -> nil:cons:n__first:n__from 20.03/6.30 n__first :: 0:s -> nil:cons:n__first:n__from -> nil:cons:n__first:n__from 20.03/6.30 activate :: nil:cons:n__first:n__from -> nil:cons:n__first:n__from 20.03/6.30 from :: 0:s -> nil:cons:n__first:n__from 20.03/6.30 n__from :: 0:s -> nil:cons:n__first:n__from 20.03/6.30 20.03/6.30 Rewrite Strategy: INNERMOST 20.03/6.30 ---------------------------------------- 20.03/6.30 20.03/6.30 (9) NarrowingProof (BOTH BOUNDS(ID, ID)) 20.03/6.30 Narrowed the inner basic terms of all right-hand sides by a single narrowing step. 20.03/6.30 ---------------------------------------- 20.03/6.30 20.03/6.30 (10) 20.03/6.30 Obligation: 20.03/6.30 Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: 20.03/6.30 20.03/6.30 Runtime Complexity Weighted TRS with Types. 20.03/6.30 The TRS R consists of the following rules: 20.03/6.30 20.03/6.30 first(0, X) -> nil [1] 20.03/6.30 first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) [1] 20.03/6.30 from(X) -> cons(X, n__from(s(X))) [1] 20.03/6.30 first(X1, X2) -> n__first(X1, X2) [1] 20.03/6.30 from(X) -> n__from(X) [1] 20.03/6.30 activate(n__first(X1, X2)) -> first(X1, X2) [1] 20.03/6.30 activate(n__from(X)) -> from(X) [1] 20.03/6.30 activate(X) -> X [1] 20.03/6.30 20.03/6.30 The TRS has the following type information: 20.03/6.30 first :: 0:s -> nil:cons:n__first:n__from -> nil:cons:n__first:n__from 20.03/6.30 0 :: 0:s 20.03/6.30 nil :: nil:cons:n__first:n__from 20.03/6.30 s :: 0:s -> 0:s 20.03/6.30 cons :: 0:s -> nil:cons:n__first:n__from -> nil:cons:n__first:n__from 20.03/6.30 n__first :: 0:s -> nil:cons:n__first:n__from -> nil:cons:n__first:n__from 20.03/6.30 activate :: nil:cons:n__first:n__from -> nil:cons:n__first:n__from 20.03/6.30 from :: 0:s -> nil:cons:n__first:n__from 20.03/6.30 n__from :: 0:s -> nil:cons:n__first:n__from 20.03/6.30 20.03/6.30 Rewrite Strategy: INNERMOST 20.03/6.30 ---------------------------------------- 20.03/6.30 20.03/6.30 (11) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) 20.03/6.30 Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. 20.03/6.30 The constant constructors are abstracted as follows: 20.03/6.30 20.03/6.30 0 => 0 20.03/6.30 nil => 0 20.03/6.30 20.03/6.30 ---------------------------------------- 20.03/6.30 20.03/6.30 (12) 20.03/6.30 Obligation: 20.03/6.30 Complexity RNTS consisting of the following rules: 20.03/6.30 20.03/6.30 activate(z) -{ 1 }-> X :|: X >= 0, z = X 20.03/6.30 activate(z) -{ 1 }-> from(X) :|: z = 1 + X, X >= 0 20.03/6.30 activate(z) -{ 1 }-> first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 20.03/6.30 first(z, z') -{ 1 }-> 0 :|: z' = X, X >= 0, z = 0 20.03/6.30 first(z, z') -{ 1 }-> 1 + X1 + X2 :|: X1 >= 0, X2 >= 0, z = X1, z' = X2 20.03/6.30 first(z, z') -{ 1 }-> 1 + Y + (1 + X + activate(Z)) :|: Z >= 0, z = 1 + X, Y >= 0, X >= 0, z' = 1 + Y + Z 20.03/6.30 from(z) -{ 1 }-> 1 + X :|: X >= 0, z = X 20.03/6.30 from(z) -{ 1 }-> 1 + X + (1 + (1 + X)) :|: X >= 0, z = X 20.03/6.30 20.03/6.30 20.03/6.30 ---------------------------------------- 20.03/6.30 20.03/6.30 (13) InliningProof (UPPER BOUND(ID)) 20.03/6.30 Inlined the following terminating rules on right-hand sides where appropriate: 20.03/6.30 20.03/6.30 from(z) -{ 1 }-> 1 + X :|: X >= 0, z = X 20.03/6.30 from(z) -{ 1 }-> 1 + X + (1 + (1 + X)) :|: X >= 0, z = X 20.03/6.30 20.03/6.30 ---------------------------------------- 20.03/6.30 20.03/6.30 (14) 20.03/6.30 Obligation: 20.03/6.30 Complexity RNTS consisting of the following rules: 20.03/6.30 20.03/6.30 activate(z) -{ 1 }-> X :|: X >= 0, z = X 20.03/6.30 activate(z) -{ 1 }-> first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 20.03/6.30 activate(z) -{ 2 }-> 1 + X' :|: z = 1 + X, X >= 0, X' >= 0, X = X' 20.03/6.30 activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z = 1 + X, X >= 0, X' >= 0, X = X' 20.03/6.30 first(z, z') -{ 1 }-> 0 :|: z' = X, X >= 0, z = 0 20.03/6.30 first(z, z') -{ 1 }-> 1 + X1 + X2 :|: X1 >= 0, X2 >= 0, z = X1, z' = X2 20.03/6.30 first(z, z') -{ 1 }-> 1 + Y + (1 + X + activate(Z)) :|: Z >= 0, z = 1 + X, Y >= 0, X >= 0, z' = 1 + Y + Z 20.03/6.30 from(z) -{ 1 }-> 1 + X :|: X >= 0, z = X 20.03/6.30 from(z) -{ 1 }-> 1 + X + (1 + (1 + X)) :|: X >= 0, z = X 20.03/6.30 20.03/6.30 20.03/6.30 ---------------------------------------- 20.03/6.30 20.03/6.30 (15) SimplificationProof (BOTH BOUNDS(ID, ID)) 20.03/6.30 Simplified the RNTS by moving equalities from the constraints into the right-hand sides. 20.03/6.30 ---------------------------------------- 20.03/6.30 20.03/6.30 (16) 20.03/6.30 Obligation: 20.03/6.30 Complexity RNTS consisting of the following rules: 20.03/6.30 20.03/6.30 activate(z) -{ 1 }-> z :|: z >= 0 20.03/6.30 activate(z) -{ 1 }-> first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 20.03/6.30 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' 20.03/6.30 activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' 20.03/6.30 first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 20.03/6.30 first(z, z') -{ 1 }-> 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z 20.03/6.30 first(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 20.03/6.30 from(z) -{ 1 }-> 1 + z :|: z >= 0 20.03/6.30 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 20.03/6.30 20.03/6.30 20.03/6.30 ---------------------------------------- 20.03/6.30 20.03/6.30 (17) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) 20.03/6.30 Found the following analysis order by SCC decomposition: 20.03/6.30 20.03/6.30 { from } 20.03/6.30 { first, activate } 20.03/6.30 20.03/6.30 ---------------------------------------- 20.03/6.30 20.03/6.30 (18) 20.03/6.30 Obligation: 20.03/6.30 Complexity RNTS consisting of the following rules: 20.03/6.30 20.03/6.30 activate(z) -{ 1 }-> z :|: z >= 0 20.03/6.30 activate(z) -{ 1 }-> first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 20.03/6.30 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' 20.03/6.30 activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' 20.03/6.30 first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 20.03/6.30 first(z, z') -{ 1 }-> 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z 20.03/6.30 first(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 20.03/6.30 from(z) -{ 1 }-> 1 + z :|: z >= 0 20.03/6.30 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 20.03/6.30 20.03/6.30 Function symbols to be analyzed: {from}, {first,activate} 20.03/6.30 20.03/6.30 ---------------------------------------- 20.03/6.30 20.03/6.30 (19) ResultPropagationProof (UPPER BOUND(ID)) 20.03/6.30 Applied inner abstraction using the recently inferred runtime/size bounds where possible. 20.03/6.30 ---------------------------------------- 20.03/6.30 20.03/6.30 (20) 20.03/6.30 Obligation: 20.03/6.30 Complexity RNTS consisting of the following rules: 20.03/6.30 20.03/6.30 activate(z) -{ 1 }-> z :|: z >= 0 20.03/6.30 activate(z) -{ 1 }-> first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 20.03/6.30 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' 20.03/6.30 activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' 20.03/6.30 first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 20.03/6.30 first(z, z') -{ 1 }-> 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z 20.03/6.30 first(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 20.03/6.30 from(z) -{ 1 }-> 1 + z :|: z >= 0 20.03/6.30 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 20.03/6.30 20.03/6.30 Function symbols to be analyzed: {from}, {first,activate} 20.03/6.30 20.03/6.30 ---------------------------------------- 20.03/6.30 20.03/6.30 (21) IntTrsBoundProof (UPPER BOUND(ID)) 20.03/6.30 20.03/6.30 Computed SIZE bound using CoFloCo for: from 20.03/6.30 after applying outer abstraction to obtain an ITS, 20.03/6.30 resulting in: O(n^1) with polynomial bound: 3 + 2*z 20.03/6.30 20.03/6.30 ---------------------------------------- 20.03/6.30 20.03/6.30 (22) 20.03/6.30 Obligation: 20.03/6.30 Complexity RNTS consisting of the following rules: 20.03/6.30 20.03/6.30 activate(z) -{ 1 }-> z :|: z >= 0 20.03/6.30 activate(z) -{ 1 }-> first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 20.03/6.30 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' 20.03/6.30 activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' 20.03/6.30 first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 20.03/6.30 first(z, z') -{ 1 }-> 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z 20.03/6.30 first(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 20.03/6.30 from(z) -{ 1 }-> 1 + z :|: z >= 0 20.03/6.30 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 20.03/6.30 20.03/6.30 Function symbols to be analyzed: {from}, {first,activate} 20.03/6.30 Previous analysis results are: 20.03/6.30 from: runtime: ?, size: O(n^1) [3 + 2*z] 20.03/6.30 20.03/6.30 ---------------------------------------- 20.03/6.30 20.03/6.30 (23) IntTrsBoundProof (UPPER BOUND(ID)) 20.03/6.30 20.03/6.30 Computed RUNTIME bound using CoFloCo for: from 20.03/6.30 after applying outer abstraction to obtain an ITS, 20.03/6.30 resulting in: O(1) with polynomial bound: 1 20.03/6.30 20.03/6.30 ---------------------------------------- 20.03/6.30 20.03/6.30 (24) 20.03/6.30 Obligation: 20.03/6.30 Complexity RNTS consisting of the following rules: 20.03/6.30 20.03/6.30 activate(z) -{ 1 }-> z :|: z >= 0 20.03/6.30 activate(z) -{ 1 }-> first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 20.03/6.30 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' 20.03/6.30 activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' 20.03/6.30 first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 20.03/6.30 first(z, z') -{ 1 }-> 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z 20.03/6.30 first(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 20.03/6.30 from(z) -{ 1 }-> 1 + z :|: z >= 0 20.03/6.30 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 20.03/6.30 20.03/6.30 Function symbols to be analyzed: {first,activate} 20.03/6.30 Previous analysis results are: 20.03/6.30 from: runtime: O(1) [1], size: O(n^1) [3 + 2*z] 20.03/6.30 20.03/6.30 ---------------------------------------- 20.03/6.30 20.03/6.30 (25) ResultPropagationProof (UPPER BOUND(ID)) 20.03/6.30 Applied inner abstraction using the recently inferred runtime/size bounds where possible. 20.03/6.30 ---------------------------------------- 20.03/6.30 20.03/6.30 (26) 20.03/6.30 Obligation: 20.03/6.30 Complexity RNTS consisting of the following rules: 20.03/6.30 20.03/6.30 activate(z) -{ 1 }-> z :|: z >= 0 20.03/6.30 activate(z) -{ 1 }-> first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 20.03/6.30 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' 20.03/6.30 activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' 20.03/6.30 first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 20.03/6.30 first(z, z') -{ 1 }-> 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z 20.03/6.30 first(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 20.03/6.30 from(z) -{ 1 }-> 1 + z :|: z >= 0 20.03/6.30 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 20.03/6.30 20.03/6.30 Function symbols to be analyzed: {first,activate} 20.03/6.30 Previous analysis results are: 20.03/6.30 from: runtime: O(1) [1], size: O(n^1) [3 + 2*z] 20.03/6.30 20.03/6.30 ---------------------------------------- 20.03/6.30 20.03/6.30 (27) IntTrsBoundProof (UPPER BOUND(ID)) 20.03/6.30 20.03/6.30 Computed SIZE bound using KoAT for: first 20.03/6.30 after applying outer abstraction to obtain an ITS, 20.03/6.30 resulting in: O(n^1) with polynomial bound: 1 + z + 2*z' 20.03/6.30 20.03/6.30 Computed SIZE bound using KoAT for: activate 20.03/6.30 after applying outer abstraction to obtain an ITS, 20.03/6.30 resulting in: O(n^1) with polynomial bound: 1 + 2*z 20.03/6.30 20.03/6.30 ---------------------------------------- 20.03/6.30 20.03/6.30 (28) 20.03/6.30 Obligation: 20.03/6.30 Complexity RNTS consisting of the following rules: 20.03/6.30 20.03/6.30 activate(z) -{ 1 }-> z :|: z >= 0 20.03/6.30 activate(z) -{ 1 }-> first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 20.03/6.30 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' 20.03/6.30 activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' 20.03/6.30 first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 20.03/6.30 first(z, z') -{ 1 }-> 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z 20.03/6.30 first(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 20.03/6.30 from(z) -{ 1 }-> 1 + z :|: z >= 0 20.03/6.30 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 20.03/6.30 20.03/6.30 Function symbols to be analyzed: {first,activate} 20.03/6.30 Previous analysis results are: 20.03/6.30 from: runtime: O(1) [1], size: O(n^1) [3 + 2*z] 20.03/6.30 first: runtime: ?, size: O(n^1) [1 + z + 2*z'] 20.03/6.30 activate: runtime: ?, size: O(n^1) [1 + 2*z] 20.03/6.30 20.03/6.30 ---------------------------------------- 20.03/6.30 20.03/6.30 (29) IntTrsBoundProof (UPPER BOUND(ID)) 20.03/6.30 20.03/6.30 Computed RUNTIME bound using KoAT for: first 20.03/6.30 after applying outer abstraction to obtain an ITS, 20.03/6.30 resulting in: O(n^1) with polynomial bound: 5 + 2*z' 20.03/6.30 20.03/6.30 Computed RUNTIME bound using KoAT for: activate 20.03/6.30 after applying outer abstraction to obtain an ITS, 20.03/6.30 resulting in: O(n^1) with polynomial bound: 9 + 2*z 20.03/6.30 20.03/6.30 ---------------------------------------- 20.03/6.30 20.03/6.30 (30) 20.03/6.30 Obligation: 20.03/6.30 Complexity RNTS consisting of the following rules: 20.03/6.30 20.03/6.30 activate(z) -{ 1 }-> z :|: z >= 0 20.03/6.30 activate(z) -{ 1 }-> first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 20.03/6.30 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' 20.03/6.30 activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' 20.03/6.30 first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 20.03/6.30 first(z, z') -{ 1 }-> 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z 20.03/6.30 first(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 20.03/6.30 from(z) -{ 1 }-> 1 + z :|: z >= 0 20.03/6.30 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 20.03/6.30 20.03/6.30 Function symbols to be analyzed: 20.03/6.30 Previous analysis results are: 20.03/6.30 from: runtime: O(1) [1], size: O(n^1) [3 + 2*z] 20.03/6.30 first: runtime: O(n^1) [5 + 2*z'], size: O(n^1) [1 + z + 2*z'] 20.03/6.30 activate: runtime: O(n^1) [9 + 2*z], size: O(n^1) [1 + 2*z] 20.03/6.30 20.03/6.30 ---------------------------------------- 20.03/6.30 20.03/6.30 (31) FinalProof (FINISHED) 20.03/6.30 Computed overall runtime complexity 20.03/6.30 ---------------------------------------- 20.03/6.30 20.03/6.30 (32) 20.03/6.30 BOUNDS(1, n^1) 20.03/6.30 20.03/6.30 ---------------------------------------- 20.03/6.30 20.03/6.30 (33) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 20.03/6.30 Transformed a relative TRS into a decreasing-loop problem. 20.03/6.30 ---------------------------------------- 20.03/6.30 20.03/6.30 (34) 20.03/6.30 Obligation: 20.03/6.30 Analyzing the following TRS for decreasing loops: 20.03/6.30 20.03/6.30 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 20.03/6.30 20.03/6.30 20.03/6.30 The TRS R consists of the following rules: 20.03/6.30 20.03/6.30 first(0, X) -> nil 20.03/6.30 first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) 20.03/6.30 from(X) -> cons(X, n__from(s(X))) 20.03/6.30 first(X1, X2) -> n__first(X1, X2) 20.03/6.30 from(X) -> n__from(X) 20.03/6.30 activate(n__first(X1, X2)) -> first(X1, X2) 20.03/6.30 activate(n__from(X)) -> from(X) 20.03/6.30 activate(X) -> X 20.03/6.30 20.03/6.30 S is empty. 20.03/6.30 Rewrite Strategy: FULL 20.03/6.30 ---------------------------------------- 20.03/6.30 20.03/6.30 (35) DecreasingLoopProof (LOWER BOUND(ID)) 20.03/6.30 The following loop(s) give(s) rise to the lower bound Omega(n^1): 20.03/6.30 20.03/6.30 The rewrite sequence 20.03/6.30 20.03/6.30 activate(n__first(s(X1_0), cons(Y2_0, Z3_0))) ->^+ cons(Y2_0, n__first(X1_0, activate(Z3_0))) 20.03/6.30 20.03/6.30 gives rise to a decreasing loop by considering the right hand sides subterm at position [1,1]. 20.03/6.30 20.03/6.30 The pumping substitution is [Z3_0 / n__first(s(X1_0), cons(Y2_0, Z3_0))]. 20.03/6.30 20.03/6.30 The result substitution is [ ]. 20.03/6.30 20.03/6.30 20.03/6.30 20.03/6.30 20.03/6.30 ---------------------------------------- 20.03/6.30 20.03/6.30 (36) 20.03/6.30 Complex Obligation (BEST) 20.03/6.30 20.03/6.30 ---------------------------------------- 20.03/6.30 20.03/6.30 (37) 20.03/6.30 Obligation: 20.03/6.30 Proved the lower bound n^1 for the following obligation: 20.03/6.30 20.03/6.30 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 20.03/6.30 20.03/6.30 20.03/6.30 The TRS R consists of the following rules: 20.03/6.30 20.03/6.30 first(0, X) -> nil 20.03/6.30 first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) 20.03/6.30 from(X) -> cons(X, n__from(s(X))) 20.03/6.30 first(X1, X2) -> n__first(X1, X2) 20.03/6.30 from(X) -> n__from(X) 20.03/6.30 activate(n__first(X1, X2)) -> first(X1, X2) 20.03/6.30 activate(n__from(X)) -> from(X) 20.03/6.30 activate(X) -> X 20.03/6.30 20.03/6.30 S is empty. 20.03/6.30 Rewrite Strategy: FULL 20.03/6.30 ---------------------------------------- 20.03/6.30 20.03/6.30 (38) LowerBoundPropagationProof (FINISHED) 20.03/6.30 Propagated lower bound. 20.03/6.30 ---------------------------------------- 20.03/6.30 20.03/6.30 (39) 20.03/6.30 BOUNDS(n^1, INF) 20.03/6.30 20.03/6.30 ---------------------------------------- 20.03/6.30 20.03/6.30 (40) 20.03/6.30 Obligation: 20.03/6.30 Analyzing the following TRS for decreasing loops: 20.03/6.30 20.03/6.30 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 20.03/6.30 20.03/6.30 20.03/6.30 The TRS R consists of the following rules: 20.03/6.30 20.03/6.30 first(0, X) -> nil 20.03/6.30 first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) 20.03/6.30 from(X) -> cons(X, n__from(s(X))) 20.03/6.30 first(X1, X2) -> n__first(X1, X2) 20.03/6.30 from(X) -> n__from(X) 20.03/6.30 activate(n__first(X1, X2)) -> first(X1, X2) 20.03/6.30 activate(n__from(X)) -> from(X) 20.03/6.30 activate(X) -> X 20.03/6.30 20.03/6.30 S is empty. 20.03/6.30 Rewrite Strategy: FULL 20.17/9.97 EOF