3.43/1.68 WORST_CASE(NON_POLY, ?) 3.59/1.70 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.59/1.70 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.59/1.70 3.59/1.70 3.59/1.70 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.59/1.70 3.59/1.70 (0) CpxTRS 3.59/1.70 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.59/1.70 (2) TRS for Loop Detection 3.59/1.70 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.59/1.70 (4) BEST 3.59/1.70 (5) proven lower bound 3.59/1.70 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 3.59/1.70 (7) BOUNDS(n^1, INF) 3.59/1.70 (8) TRS for Loop Detection 3.59/1.70 (9) DecreasingLoopProof [FINISHED, 32 ms] 3.59/1.70 (10) BOUNDS(EXP, INF) 3.59/1.70 3.59/1.70 3.59/1.70 ---------------------------------------- 3.59/1.70 3.59/1.70 (0) 3.59/1.70 Obligation: 3.59/1.70 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.59/1.70 3.59/1.70 3.59/1.70 The TRS R consists of the following rules: 3.59/1.70 3.59/1.70 fst(0, Z) -> nil 3.59/1.70 fst(s(X), cons(Y, Z)) -> cons(Y, n__fst(activate(X), activate(Z))) 3.59/1.70 from(X) -> cons(X, n__from(n__s(X))) 3.59/1.70 add(0, X) -> X 3.59/1.70 add(s(X), Y) -> s(n__add(activate(X), Y)) 3.59/1.70 len(nil) -> 0 3.59/1.70 len(cons(X, Z)) -> s(n__len(activate(Z))) 3.59/1.70 fst(X1, X2) -> n__fst(X1, X2) 3.59/1.70 from(X) -> n__from(X) 3.59/1.70 s(X) -> n__s(X) 3.59/1.70 add(X1, X2) -> n__add(X1, X2) 3.59/1.70 len(X) -> n__len(X) 3.59/1.70 activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2)) 3.59/1.70 activate(n__from(X)) -> from(activate(X)) 3.59/1.70 activate(n__s(X)) -> s(X) 3.59/1.70 activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) 3.59/1.70 activate(n__len(X)) -> len(activate(X)) 3.59/1.70 activate(X) -> X 3.59/1.70 3.59/1.70 S is empty. 3.59/1.70 Rewrite Strategy: FULL 3.59/1.70 ---------------------------------------- 3.59/1.70 3.59/1.70 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.59/1.70 Transformed a relative TRS into a decreasing-loop problem. 3.59/1.70 ---------------------------------------- 3.59/1.70 3.59/1.70 (2) 3.59/1.70 Obligation: 3.59/1.70 Analyzing the following TRS for decreasing loops: 3.59/1.70 3.59/1.70 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.59/1.70 3.59/1.70 3.59/1.70 The TRS R consists of the following rules: 3.59/1.70 3.59/1.70 fst(0, Z) -> nil 3.59/1.70 fst(s(X), cons(Y, Z)) -> cons(Y, n__fst(activate(X), activate(Z))) 3.59/1.70 from(X) -> cons(X, n__from(n__s(X))) 3.59/1.70 add(0, X) -> X 3.59/1.70 add(s(X), Y) -> s(n__add(activate(X), Y)) 3.59/1.70 len(nil) -> 0 3.59/1.70 len(cons(X, Z)) -> s(n__len(activate(Z))) 3.59/1.70 fst(X1, X2) -> n__fst(X1, X2) 3.59/1.70 from(X) -> n__from(X) 3.59/1.70 s(X) -> n__s(X) 3.59/1.70 add(X1, X2) -> n__add(X1, X2) 3.59/1.70 len(X) -> n__len(X) 3.59/1.70 activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2)) 3.59/1.70 activate(n__from(X)) -> from(activate(X)) 3.59/1.70 activate(n__s(X)) -> s(X) 3.59/1.70 activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) 3.59/1.70 activate(n__len(X)) -> len(activate(X)) 3.59/1.70 activate(X) -> X 3.59/1.70 3.59/1.70 S is empty. 3.59/1.70 Rewrite Strategy: FULL 3.59/1.70 ---------------------------------------- 3.59/1.70 3.59/1.70 (3) DecreasingLoopProof (LOWER BOUND(ID)) 3.59/1.70 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.59/1.70 3.59/1.70 The rewrite sequence 3.59/1.70 3.59/1.70 activate(n__add(X1, X2)) ->^+ add(activate(X1), activate(X2)) 3.59/1.70 3.59/1.70 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.59/1.70 3.59/1.70 The pumping substitution is [X1 / n__add(X1, X2)]. 3.59/1.70 3.59/1.70 The result substitution is [ ]. 3.59/1.70 3.59/1.70 3.59/1.70 3.59/1.70 3.59/1.70 ---------------------------------------- 3.59/1.70 3.59/1.70 (4) 3.59/1.70 Complex Obligation (BEST) 3.59/1.70 3.59/1.70 ---------------------------------------- 3.59/1.70 3.59/1.70 (5) 3.59/1.70 Obligation: 3.59/1.70 Proved the lower bound n^1 for the following obligation: 3.59/1.70 3.59/1.70 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.59/1.70 3.59/1.70 3.59/1.70 The TRS R consists of the following rules: 3.59/1.70 3.59/1.70 fst(0, Z) -> nil 3.59/1.70 fst(s(X), cons(Y, Z)) -> cons(Y, n__fst(activate(X), activate(Z))) 3.59/1.70 from(X) -> cons(X, n__from(n__s(X))) 3.59/1.70 add(0, X) -> X 3.59/1.70 add(s(X), Y) -> s(n__add(activate(X), Y)) 3.59/1.70 len(nil) -> 0 3.59/1.70 len(cons(X, Z)) -> s(n__len(activate(Z))) 3.59/1.70 fst(X1, X2) -> n__fst(X1, X2) 3.59/1.70 from(X) -> n__from(X) 3.59/1.70 s(X) -> n__s(X) 3.59/1.70 add(X1, X2) -> n__add(X1, X2) 3.59/1.70 len(X) -> n__len(X) 3.59/1.70 activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2)) 3.59/1.70 activate(n__from(X)) -> from(activate(X)) 3.59/1.70 activate(n__s(X)) -> s(X) 3.59/1.70 activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) 3.59/1.70 activate(n__len(X)) -> len(activate(X)) 3.59/1.70 activate(X) -> X 3.59/1.70 3.59/1.70 S is empty. 3.59/1.70 Rewrite Strategy: FULL 3.59/1.70 ---------------------------------------- 3.59/1.70 3.59/1.70 (6) LowerBoundPropagationProof (FINISHED) 3.59/1.70 Propagated lower bound. 3.59/1.70 ---------------------------------------- 3.59/1.70 3.59/1.70 (7) 3.59/1.70 BOUNDS(n^1, INF) 3.59/1.70 3.59/1.70 ---------------------------------------- 3.59/1.70 3.59/1.70 (8) 3.59/1.70 Obligation: 3.59/1.70 Analyzing the following TRS for decreasing loops: 3.59/1.70 3.59/1.70 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.59/1.70 3.59/1.70 3.59/1.70 The TRS R consists of the following rules: 3.59/1.70 3.59/1.70 fst(0, Z) -> nil 3.59/1.70 fst(s(X), cons(Y, Z)) -> cons(Y, n__fst(activate(X), activate(Z))) 3.59/1.70 from(X) -> cons(X, n__from(n__s(X))) 3.59/1.70 add(0, X) -> X 3.59/1.70 add(s(X), Y) -> s(n__add(activate(X), Y)) 3.59/1.70 len(nil) -> 0 3.59/1.70 len(cons(X, Z)) -> s(n__len(activate(Z))) 3.59/1.70 fst(X1, X2) -> n__fst(X1, X2) 3.59/1.70 from(X) -> n__from(X) 3.59/1.70 s(X) -> n__s(X) 3.59/1.70 add(X1, X2) -> n__add(X1, X2) 3.59/1.70 len(X) -> n__len(X) 3.59/1.70 activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2)) 3.59/1.70 activate(n__from(X)) -> from(activate(X)) 3.59/1.70 activate(n__s(X)) -> s(X) 3.59/1.70 activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) 3.59/1.70 activate(n__len(X)) -> len(activate(X)) 3.59/1.70 activate(X) -> X 3.59/1.70 3.59/1.70 S is empty. 3.59/1.70 Rewrite Strategy: FULL 3.59/1.70 ---------------------------------------- 3.59/1.70 3.59/1.70 (9) DecreasingLoopProof (FINISHED) 3.59/1.70 The following loop(s) give(s) rise to the lower bound EXP: 3.59/1.70 3.59/1.70 The rewrite sequence 3.59/1.70 3.59/1.70 activate(n__from(X)) ->^+ cons(activate(X), n__from(n__s(activate(X)))) 3.59/1.70 3.59/1.70 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.59/1.70 3.59/1.70 The pumping substitution is [X / n__from(X)]. 3.59/1.70 3.59/1.70 The result substitution is [ ]. 3.59/1.70 3.59/1.70 3.59/1.70 3.59/1.70 The rewrite sequence 3.59/1.70 3.59/1.70 activate(n__from(X)) ->^+ cons(activate(X), n__from(n__s(activate(X)))) 3.59/1.70 3.59/1.70 gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0,0]. 3.59/1.70 3.59/1.70 The pumping substitution is [X / n__from(X)]. 3.59/1.70 3.59/1.70 The result substitution is [ ]. 3.59/1.70 3.59/1.70 3.59/1.70 3.59/1.70 3.59/1.70 ---------------------------------------- 3.59/1.70 3.59/1.70 (10) 3.59/1.70 BOUNDS(EXP, INF) 3.59/1.74 EOF