2.93/1.55 WORST_CASE(Omega(n^1), O(n^1)) 2.93/1.55 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 2.93/1.55 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 2.93/1.55 2.93/1.55 2.93/1.55 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 2.93/1.55 2.93/1.55 (0) CpxTRS 2.93/1.55 (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] 2.93/1.55 (2) CpxTRS 2.93/1.55 (3) CpxTrsMatchBoundsProof [FINISHED, 0 ms] 2.93/1.55 (4) BOUNDS(1, n^1) 2.93/1.55 (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 2.93/1.55 (6) TRS for Loop Detection 2.93/1.55 (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 2.93/1.55 (8) BEST 2.93/1.55 (9) proven lower bound 2.93/1.55 (10) LowerBoundPropagationProof [FINISHED, 0 ms] 2.93/1.55 (11) BOUNDS(n^1, INF) 2.93/1.55 (12) TRS for Loop Detection 2.93/1.55 2.93/1.55 2.93/1.55 ---------------------------------------- 2.93/1.55 2.93/1.55 (0) 2.93/1.55 Obligation: 2.93/1.55 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 2.93/1.55 2.93/1.55 2.93/1.55 The TRS R consists of the following rules: 2.93/1.55 2.93/1.55 f(f(a)) -> f(g(n__f(n__a))) 2.93/1.55 f(X) -> n__f(X) 2.93/1.55 a -> n__a 2.93/1.55 activate(n__f(X)) -> f(activate(X)) 2.93/1.55 activate(n__a) -> a 2.93/1.55 activate(X) -> X 2.93/1.55 2.93/1.55 S is empty. 2.93/1.55 Rewrite Strategy: FULL 2.93/1.55 ---------------------------------------- 2.93/1.55 2.93/1.55 (1) RelTrsToTrsProof (UPPER BOUND(ID)) 2.93/1.55 transformed relative TRS to TRS 2.93/1.55 ---------------------------------------- 2.93/1.55 2.93/1.55 (2) 2.93/1.55 Obligation: 2.93/1.55 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). 2.93/1.55 2.93/1.55 2.93/1.55 The TRS R consists of the following rules: 2.93/1.55 2.93/1.55 f(f(a)) -> f(g(n__f(n__a))) 2.93/1.55 f(X) -> n__f(X) 2.93/1.55 a -> n__a 2.93/1.55 activate(n__f(X)) -> f(activate(X)) 2.93/1.55 activate(n__a) -> a 2.93/1.55 activate(X) -> X 2.93/1.55 2.93/1.55 S is empty. 2.93/1.55 Rewrite Strategy: FULL 2.93/1.55 ---------------------------------------- 2.93/1.55 2.93/1.55 (3) CpxTrsMatchBoundsProof (FINISHED) 2.93/1.55 A linear upper bound on the runtime complexity of the TRS R could be shown with a Match Bound [MATCHBOUNDS1,MATCHBOUNDS2] of 3. 2.93/1.55 The certificate found is represented by the following graph. 2.93/1.55 2.93/1.55 "[13, 14, 15, 16, 17, 18] 2.93/1.55 {(13,14,[f_1|0, a|0, activate_1|0, n__f_1|1, n__a|1, a|1, g_1|1, n__a|2]), (13,15,[f_1|1, n__f_1|2]), (13,16,[f_1|2, n__f_1|3]), (14,14,[g_1|0, n__f_1|0, n__a|0]), (15,14,[activate_1|1, n__f_1|1, a|1, n__a|1, g_1|1, n__a|2]), (15,15,[f_1|1, n__f_1|2]), (15,16,[f_1|2, n__f_1|3]), (16,17,[g_1|2]), (17,18,[n__f_1|2]), (18,14,[n__a|2])}" 2.93/1.55 ---------------------------------------- 2.93/1.55 2.93/1.55 (4) 2.93/1.55 BOUNDS(1, n^1) 2.93/1.55 2.93/1.55 ---------------------------------------- 2.93/1.55 2.93/1.55 (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 2.93/1.55 Transformed a relative TRS into a decreasing-loop problem. 2.93/1.55 ---------------------------------------- 2.93/1.55 2.93/1.55 (6) 2.93/1.55 Obligation: 2.93/1.55 Analyzing the following TRS for decreasing loops: 2.93/1.55 2.93/1.55 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 2.93/1.55 2.93/1.55 2.93/1.55 The TRS R consists of the following rules: 2.93/1.55 2.93/1.55 f(f(a)) -> f(g(n__f(n__a))) 2.93/1.55 f(X) -> n__f(X) 2.93/1.55 a -> n__a 2.93/1.55 activate(n__f(X)) -> f(activate(X)) 2.93/1.55 activate(n__a) -> a 2.93/1.55 activate(X) -> X 2.93/1.55 2.93/1.55 S is empty. 2.93/1.55 Rewrite Strategy: FULL 2.93/1.55 ---------------------------------------- 2.93/1.55 2.93/1.55 (7) DecreasingLoopProof (LOWER BOUND(ID)) 2.93/1.55 The following loop(s) give(s) rise to the lower bound Omega(n^1): 2.93/1.55 2.93/1.55 The rewrite sequence 2.93/1.55 2.93/1.55 activate(n__f(X)) ->^+ f(activate(X)) 2.93/1.55 2.93/1.55 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 2.93/1.55 2.93/1.55 The pumping substitution is [X / n__f(X)]. 2.93/1.55 2.93/1.55 The result substitution is [ ]. 2.93/1.55 2.93/1.55 2.93/1.55 2.93/1.55 2.93/1.55 ---------------------------------------- 2.93/1.55 2.93/1.55 (8) 2.93/1.55 Complex Obligation (BEST) 2.93/1.55 2.93/1.55 ---------------------------------------- 2.93/1.55 2.93/1.55 (9) 2.93/1.55 Obligation: 2.93/1.55 Proved the lower bound n^1 for the following obligation: 2.93/1.55 2.93/1.55 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 2.93/1.55 2.93/1.55 2.93/1.55 The TRS R consists of the following rules: 2.93/1.55 2.93/1.55 f(f(a)) -> f(g(n__f(n__a))) 2.93/1.55 f(X) -> n__f(X) 2.93/1.55 a -> n__a 2.93/1.55 activate(n__f(X)) -> f(activate(X)) 2.93/1.55 activate(n__a) -> a 2.93/1.55 activate(X) -> X 2.93/1.55 2.93/1.55 S is empty. 2.93/1.55 Rewrite Strategy: FULL 2.93/1.55 ---------------------------------------- 2.93/1.55 2.93/1.55 (10) LowerBoundPropagationProof (FINISHED) 2.93/1.55 Propagated lower bound. 2.93/1.55 ---------------------------------------- 2.93/1.55 2.93/1.55 (11) 2.93/1.55 BOUNDS(n^1, INF) 2.93/1.55 2.93/1.55 ---------------------------------------- 2.93/1.55 2.93/1.55 (12) 2.93/1.55 Obligation: 2.93/1.55 Analyzing the following TRS for decreasing loops: 2.93/1.55 2.93/1.55 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 2.93/1.55 2.93/1.55 2.93/1.55 The TRS R consists of the following rules: 2.93/1.55 2.93/1.55 f(f(a)) -> f(g(n__f(n__a))) 2.93/1.55 f(X) -> n__f(X) 2.93/1.55 a -> n__a 2.93/1.55 activate(n__f(X)) -> f(activate(X)) 2.93/1.55 activate(n__a) -> a 2.93/1.55 activate(X) -> X 2.93/1.55 2.93/1.55 S is empty. 2.93/1.55 Rewrite Strategy: FULL 3.24/1.57 EOF