3.93/1.78 WORST_CASE(NON_POLY, ?) 3.93/1.80 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.93/1.80 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.93/1.80 3.93/1.80 3.93/1.80 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.93/1.80 3.93/1.80 (0) CpxTRS 3.93/1.80 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.93/1.80 (2) TRS for Loop Detection 3.93/1.80 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.93/1.80 (4) BEST 3.93/1.80 (5) proven lower bound 3.93/1.80 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 3.93/1.80 (7) BOUNDS(n^1, INF) 3.93/1.80 (8) TRS for Loop Detection 3.93/1.80 (9) DecreasingLoopProof [FINISHED, 81 ms] 3.93/1.80 (10) BOUNDS(EXP, INF) 3.93/1.80 3.93/1.80 3.93/1.80 ---------------------------------------- 3.93/1.80 3.93/1.80 (0) 3.93/1.80 Obligation: 3.93/1.80 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.93/1.80 3.93/1.80 3.93/1.80 The TRS R consists of the following rules: 3.93/1.80 3.93/1.80 a__from(X) -> cons(mark(X), from(s(X))) 3.93/1.80 a__2ndspos(0, Z) -> rnil 3.93/1.80 a__2ndspos(s(N), cons(X, cons(Y, Z))) -> rcons(posrecip(mark(Y)), a__2ndsneg(mark(N), mark(Z))) 3.93/1.80 a__2ndsneg(0, Z) -> rnil 3.93/1.80 a__2ndsneg(s(N), cons(X, cons(Y, Z))) -> rcons(negrecip(mark(Y)), a__2ndspos(mark(N), mark(Z))) 3.93/1.80 a__pi(X) -> a__2ndspos(mark(X), a__from(0)) 3.93/1.80 a__plus(0, Y) -> mark(Y) 3.93/1.80 a__plus(s(X), Y) -> s(a__plus(mark(X), mark(Y))) 3.93/1.80 a__times(0, Y) -> 0 3.93/1.80 a__times(s(X), Y) -> a__plus(mark(Y), a__times(mark(X), mark(Y))) 3.93/1.80 a__square(X) -> a__times(mark(X), mark(X)) 3.93/1.80 mark(from(X)) -> a__from(mark(X)) 3.93/1.80 mark(2ndspos(X1, X2)) -> a__2ndspos(mark(X1), mark(X2)) 3.93/1.80 mark(2ndsneg(X1, X2)) -> a__2ndsneg(mark(X1), mark(X2)) 3.93/1.80 mark(pi(X)) -> a__pi(mark(X)) 3.93/1.80 mark(plus(X1, X2)) -> a__plus(mark(X1), mark(X2)) 3.93/1.80 mark(times(X1, X2)) -> a__times(mark(X1), mark(X2)) 3.93/1.80 mark(square(X)) -> a__square(mark(X)) 3.93/1.80 mark(0) -> 0 3.93/1.80 mark(s(X)) -> s(mark(X)) 3.93/1.80 mark(posrecip(X)) -> posrecip(mark(X)) 3.93/1.80 mark(negrecip(X)) -> negrecip(mark(X)) 3.93/1.80 mark(nil) -> nil 3.93/1.80 mark(cons(X1, X2)) -> cons(mark(X1), X2) 3.93/1.80 mark(rnil) -> rnil 3.93/1.80 mark(rcons(X1, X2)) -> rcons(mark(X1), mark(X2)) 3.93/1.80 a__from(X) -> from(X) 3.93/1.80 a__2ndspos(X1, X2) -> 2ndspos(X1, X2) 3.93/1.80 a__2ndsneg(X1, X2) -> 2ndsneg(X1, X2) 3.93/1.80 a__pi(X) -> pi(X) 3.93/1.80 a__plus(X1, X2) -> plus(X1, X2) 3.93/1.80 a__times(X1, X2) -> times(X1, X2) 3.93/1.80 a__square(X) -> square(X) 3.93/1.80 3.93/1.80 S is empty. 3.93/1.80 Rewrite Strategy: FULL 3.93/1.80 ---------------------------------------- 3.93/1.80 3.93/1.80 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.93/1.80 Transformed a relative TRS into a decreasing-loop problem. 3.93/1.80 ---------------------------------------- 3.93/1.80 3.93/1.80 (2) 3.93/1.80 Obligation: 3.93/1.80 Analyzing the following TRS for decreasing loops: 3.93/1.80 3.93/1.80 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.93/1.80 3.93/1.80 3.93/1.80 The TRS R consists of the following rules: 3.93/1.80 3.93/1.80 a__from(X) -> cons(mark(X), from(s(X))) 3.93/1.80 a__2ndspos(0, Z) -> rnil 3.93/1.80 a__2ndspos(s(N), cons(X, cons(Y, Z))) -> rcons(posrecip(mark(Y)), a__2ndsneg(mark(N), mark(Z))) 3.93/1.80 a__2ndsneg(0, Z) -> rnil 3.93/1.80 a__2ndsneg(s(N), cons(X, cons(Y, Z))) -> rcons(negrecip(mark(Y)), a__2ndspos(mark(N), mark(Z))) 3.93/1.80 a__pi(X) -> a__2ndspos(mark(X), a__from(0)) 3.93/1.80 a__plus(0, Y) -> mark(Y) 3.93/1.80 a__plus(s(X), Y) -> s(a__plus(mark(X), mark(Y))) 3.93/1.80 a__times(0, Y) -> 0 3.93/1.80 a__times(s(X), Y) -> a__plus(mark(Y), a__times(mark(X), mark(Y))) 3.93/1.80 a__square(X) -> a__times(mark(X), mark(X)) 3.93/1.80 mark(from(X)) -> a__from(mark(X)) 3.93/1.80 mark(2ndspos(X1, X2)) -> a__2ndspos(mark(X1), mark(X2)) 3.93/1.80 mark(2ndsneg(X1, X2)) -> a__2ndsneg(mark(X1), mark(X2)) 3.93/1.80 mark(pi(X)) -> a__pi(mark(X)) 3.93/1.80 mark(plus(X1, X2)) -> a__plus(mark(X1), mark(X2)) 3.93/1.80 mark(times(X1, X2)) -> a__times(mark(X1), mark(X2)) 3.93/1.80 mark(square(X)) -> a__square(mark(X)) 3.93/1.80 mark(0) -> 0 3.93/1.80 mark(s(X)) -> s(mark(X)) 3.93/1.80 mark(posrecip(X)) -> posrecip(mark(X)) 3.93/1.80 mark(negrecip(X)) -> negrecip(mark(X)) 3.93/1.80 mark(nil) -> nil 3.93/1.80 mark(cons(X1, X2)) -> cons(mark(X1), X2) 3.93/1.80 mark(rnil) -> rnil 3.93/1.80 mark(rcons(X1, X2)) -> rcons(mark(X1), mark(X2)) 3.93/1.80 a__from(X) -> from(X) 3.93/1.80 a__2ndspos(X1, X2) -> 2ndspos(X1, X2) 3.93/1.80 a__2ndsneg(X1, X2) -> 2ndsneg(X1, X2) 3.93/1.80 a__pi(X) -> pi(X) 3.93/1.80 a__plus(X1, X2) -> plus(X1, X2) 3.93/1.80 a__times(X1, X2) -> times(X1, X2) 3.93/1.80 a__square(X) -> square(X) 3.93/1.80 3.93/1.80 S is empty. 3.93/1.80 Rewrite Strategy: FULL 3.93/1.80 ---------------------------------------- 3.93/1.80 3.93/1.80 (3) DecreasingLoopProof (LOWER BOUND(ID)) 3.93/1.80 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.93/1.80 3.93/1.80 The rewrite sequence 3.93/1.80 3.93/1.80 mark(2ndsneg(X1, X2)) ->^+ a__2ndsneg(mark(X1), mark(X2)) 3.93/1.80 3.93/1.80 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.93/1.80 3.93/1.80 The pumping substitution is [X1 / 2ndsneg(X1, X2)]. 3.93/1.80 3.93/1.80 The result substitution is [ ]. 3.93/1.80 3.93/1.80 3.93/1.80 3.93/1.80 3.93/1.80 ---------------------------------------- 3.93/1.80 3.93/1.80 (4) 3.93/1.80 Complex Obligation (BEST) 3.93/1.80 3.93/1.80 ---------------------------------------- 3.93/1.80 3.93/1.80 (5) 3.93/1.80 Obligation: 3.93/1.80 Proved the lower bound n^1 for the following obligation: 3.93/1.80 3.93/1.80 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.93/1.80 3.93/1.80 3.93/1.80 The TRS R consists of the following rules: 3.93/1.80 3.93/1.80 a__from(X) -> cons(mark(X), from(s(X))) 3.93/1.80 a__2ndspos(0, Z) -> rnil 3.93/1.80 a__2ndspos(s(N), cons(X, cons(Y, Z))) -> rcons(posrecip(mark(Y)), a__2ndsneg(mark(N), mark(Z))) 3.93/1.80 a__2ndsneg(0, Z) -> rnil 3.93/1.80 a__2ndsneg(s(N), cons(X, cons(Y, Z))) -> rcons(negrecip(mark(Y)), a__2ndspos(mark(N), mark(Z))) 3.93/1.80 a__pi(X) -> a__2ndspos(mark(X), a__from(0)) 3.93/1.80 a__plus(0, Y) -> mark(Y) 3.93/1.80 a__plus(s(X), Y) -> s(a__plus(mark(X), mark(Y))) 3.93/1.80 a__times(0, Y) -> 0 3.93/1.80 a__times(s(X), Y) -> a__plus(mark(Y), a__times(mark(X), mark(Y))) 3.93/1.80 a__square(X) -> a__times(mark(X), mark(X)) 3.93/1.80 mark(from(X)) -> a__from(mark(X)) 3.93/1.80 mark(2ndspos(X1, X2)) -> a__2ndspos(mark(X1), mark(X2)) 3.93/1.80 mark(2ndsneg(X1, X2)) -> a__2ndsneg(mark(X1), mark(X2)) 3.93/1.80 mark(pi(X)) -> a__pi(mark(X)) 3.93/1.80 mark(plus(X1, X2)) -> a__plus(mark(X1), mark(X2)) 3.93/1.80 mark(times(X1, X2)) -> a__times(mark(X1), mark(X2)) 3.93/1.80 mark(square(X)) -> a__square(mark(X)) 3.93/1.80 mark(0) -> 0 3.93/1.80 mark(s(X)) -> s(mark(X)) 3.93/1.80 mark(posrecip(X)) -> posrecip(mark(X)) 3.93/1.80 mark(negrecip(X)) -> negrecip(mark(X)) 3.93/1.80 mark(nil) -> nil 3.93/1.80 mark(cons(X1, X2)) -> cons(mark(X1), X2) 3.93/1.80 mark(rnil) -> rnil 3.93/1.80 mark(rcons(X1, X2)) -> rcons(mark(X1), mark(X2)) 3.93/1.80 a__from(X) -> from(X) 3.93/1.80 a__2ndspos(X1, X2) -> 2ndspos(X1, X2) 3.93/1.80 a__2ndsneg(X1, X2) -> 2ndsneg(X1, X2) 3.93/1.80 a__pi(X) -> pi(X) 3.93/1.80 a__plus(X1, X2) -> plus(X1, X2) 3.93/1.80 a__times(X1, X2) -> times(X1, X2) 3.93/1.80 a__square(X) -> square(X) 3.93/1.80 3.93/1.80 S is empty. 3.93/1.80 Rewrite Strategy: FULL 3.93/1.80 ---------------------------------------- 3.93/1.80 3.93/1.80 (6) LowerBoundPropagationProof (FINISHED) 3.93/1.80 Propagated lower bound. 3.93/1.80 ---------------------------------------- 3.93/1.80 3.93/1.80 (7) 3.93/1.80 BOUNDS(n^1, INF) 3.93/1.80 3.93/1.80 ---------------------------------------- 3.93/1.80 3.93/1.80 (8) 3.93/1.80 Obligation: 3.93/1.80 Analyzing the following TRS for decreasing loops: 3.93/1.80 3.93/1.80 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.93/1.80 3.93/1.80 3.93/1.80 The TRS R consists of the following rules: 3.93/1.80 3.93/1.80 a__from(X) -> cons(mark(X), from(s(X))) 3.93/1.80 a__2ndspos(0, Z) -> rnil 3.93/1.80 a__2ndspos(s(N), cons(X, cons(Y, Z))) -> rcons(posrecip(mark(Y)), a__2ndsneg(mark(N), mark(Z))) 3.93/1.80 a__2ndsneg(0, Z) -> rnil 3.93/1.80 a__2ndsneg(s(N), cons(X, cons(Y, Z))) -> rcons(negrecip(mark(Y)), a__2ndspos(mark(N), mark(Z))) 3.93/1.80 a__pi(X) -> a__2ndspos(mark(X), a__from(0)) 3.93/1.80 a__plus(0, Y) -> mark(Y) 3.93/1.80 a__plus(s(X), Y) -> s(a__plus(mark(X), mark(Y))) 3.93/1.80 a__times(0, Y) -> 0 3.93/1.80 a__times(s(X), Y) -> a__plus(mark(Y), a__times(mark(X), mark(Y))) 3.93/1.80 a__square(X) -> a__times(mark(X), mark(X)) 3.93/1.80 mark(from(X)) -> a__from(mark(X)) 3.93/1.80 mark(2ndspos(X1, X2)) -> a__2ndspos(mark(X1), mark(X2)) 3.93/1.80 mark(2ndsneg(X1, X2)) -> a__2ndsneg(mark(X1), mark(X2)) 3.93/1.80 mark(pi(X)) -> a__pi(mark(X)) 3.93/1.80 mark(plus(X1, X2)) -> a__plus(mark(X1), mark(X2)) 3.93/1.80 mark(times(X1, X2)) -> a__times(mark(X1), mark(X2)) 3.93/1.80 mark(square(X)) -> a__square(mark(X)) 3.93/1.80 mark(0) -> 0 3.93/1.80 mark(s(X)) -> s(mark(X)) 3.93/1.80 mark(posrecip(X)) -> posrecip(mark(X)) 3.93/1.80 mark(negrecip(X)) -> negrecip(mark(X)) 3.93/1.80 mark(nil) -> nil 3.93/1.80 mark(cons(X1, X2)) -> cons(mark(X1), X2) 3.93/1.80 mark(rnil) -> rnil 3.93/1.80 mark(rcons(X1, X2)) -> rcons(mark(X1), mark(X2)) 3.93/1.80 a__from(X) -> from(X) 3.93/1.80 a__2ndspos(X1, X2) -> 2ndspos(X1, X2) 3.93/1.80 a__2ndsneg(X1, X2) -> 2ndsneg(X1, X2) 3.93/1.80 a__pi(X) -> pi(X) 3.93/1.80 a__plus(X1, X2) -> plus(X1, X2) 3.93/1.80 a__times(X1, X2) -> times(X1, X2) 3.93/1.80 a__square(X) -> square(X) 3.93/1.80 3.93/1.80 S is empty. 3.93/1.80 Rewrite Strategy: FULL 3.93/1.80 ---------------------------------------- 3.93/1.80 3.93/1.80 (9) DecreasingLoopProof (FINISHED) 3.93/1.80 The following loop(s) give(s) rise to the lower bound EXP: 3.93/1.80 3.93/1.80 The rewrite sequence 3.93/1.80 3.93/1.80 mark(from(X)) ->^+ cons(mark(mark(X)), from(s(mark(X)))) 3.93/1.80 3.93/1.80 gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0]. 3.93/1.80 3.93/1.80 The pumping substitution is [X / from(X)]. 3.93/1.80 3.93/1.80 The result substitution is [ ]. 3.93/1.80 3.93/1.80 3.93/1.80 3.93/1.80 The rewrite sequence 3.93/1.80 3.93/1.80 mark(from(X)) ->^+ cons(mark(mark(X)), from(s(mark(X)))) 3.93/1.80 3.93/1.80 gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0,0]. 3.93/1.80 3.93/1.80 The pumping substitution is [X / from(X)]. 3.93/1.80 3.93/1.80 The result substitution is [ ]. 3.93/1.80 3.93/1.80 3.93/1.80 3.93/1.80 3.93/1.80 ---------------------------------------- 3.93/1.80 3.93/1.80 (10) 3.93/1.80 BOUNDS(EXP, INF) 4.16/1.83 EOF