311.13/291.54 WORST_CASE(Omega(n^1), ?) 311.13/291.55 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 311.13/291.55 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 311.13/291.55 311.13/291.55 311.13/291.55 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 311.13/291.55 311.13/291.55 (0) CpxTRS 311.13/291.55 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 311.13/291.55 (2) TRS for Loop Detection 311.13/291.55 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 311.13/291.55 (4) BEST 311.13/291.55 (5) proven lower bound 311.13/291.55 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 311.13/291.55 (7) BOUNDS(n^1, INF) 311.13/291.55 (8) TRS for Loop Detection 311.13/291.55 311.13/291.55 311.13/291.55 ---------------------------------------- 311.13/291.55 311.13/291.55 (0) 311.13/291.55 Obligation: 311.13/291.55 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 311.13/291.55 311.13/291.55 311.13/291.55 The TRS R consists of the following rules: 311.13/291.55 311.13/291.55 fib(N) -> sel(N, fib1(s(0), s(0))) 311.13/291.55 fib1(X, Y) -> cons(X, n__fib1(Y, add(X, Y))) 311.13/291.55 add(0, X) -> X 311.13/291.55 add(s(X), Y) -> s(add(X, Y)) 311.13/291.55 sel(0, cons(X, XS)) -> X 311.13/291.55 sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) 311.13/291.55 fib1(X1, X2) -> n__fib1(X1, X2) 311.13/291.55 activate(n__fib1(X1, X2)) -> fib1(X1, X2) 311.13/291.55 activate(X) -> X 311.13/291.55 311.13/291.55 S is empty. 311.13/291.55 Rewrite Strategy: FULL 311.13/291.55 ---------------------------------------- 311.13/291.55 311.13/291.55 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 311.13/291.55 Transformed a relative TRS into a decreasing-loop problem. 311.13/291.55 ---------------------------------------- 311.13/291.55 311.13/291.55 (2) 311.13/291.55 Obligation: 311.13/291.55 Analyzing the following TRS for decreasing loops: 311.13/291.55 311.13/291.55 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 311.13/291.55 311.13/291.55 311.13/291.55 The TRS R consists of the following rules: 311.13/291.55 311.13/291.55 fib(N) -> sel(N, fib1(s(0), s(0))) 311.13/291.55 fib1(X, Y) -> cons(X, n__fib1(Y, add(X, Y))) 311.13/291.55 add(0, X) -> X 311.13/291.55 add(s(X), Y) -> s(add(X, Y)) 311.13/291.55 sel(0, cons(X, XS)) -> X 311.13/291.55 sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) 311.13/291.55 fib1(X1, X2) -> n__fib1(X1, X2) 311.13/291.55 activate(n__fib1(X1, X2)) -> fib1(X1, X2) 311.13/291.55 activate(X) -> X 311.13/291.55 311.13/291.55 S is empty. 311.13/291.55 Rewrite Strategy: FULL 311.13/291.55 ---------------------------------------- 311.13/291.55 311.13/291.55 (3) DecreasingLoopProof (LOWER BOUND(ID)) 311.13/291.55 The following loop(s) give(s) rise to the lower bound Omega(n^1): 311.13/291.55 311.13/291.55 The rewrite sequence 311.13/291.55 311.13/291.55 add(s(X), Y) ->^+ s(add(X, Y)) 311.13/291.55 311.13/291.55 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 311.13/291.55 311.13/291.55 The pumping substitution is [X / s(X)]. 311.13/291.55 311.13/291.55 The result substitution is [ ]. 311.13/291.55 311.13/291.55 311.13/291.55 311.13/291.55 311.13/291.55 ---------------------------------------- 311.13/291.55 311.13/291.55 (4) 311.13/291.55 Complex Obligation (BEST) 311.13/291.55 311.13/291.55 ---------------------------------------- 311.13/291.55 311.13/291.55 (5) 311.13/291.55 Obligation: 311.13/291.55 Proved the lower bound n^1 for the following obligation: 311.13/291.55 311.13/291.55 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 311.13/291.55 311.13/291.55 311.13/291.55 The TRS R consists of the following rules: 311.13/291.55 311.13/291.55 fib(N) -> sel(N, fib1(s(0), s(0))) 311.13/291.55 fib1(X, Y) -> cons(X, n__fib1(Y, add(X, Y))) 311.13/291.55 add(0, X) -> X 311.13/291.55 add(s(X), Y) -> s(add(X, Y)) 311.13/291.55 sel(0, cons(X, XS)) -> X 311.13/291.55 sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) 311.13/291.55 fib1(X1, X2) -> n__fib1(X1, X2) 311.13/291.55 activate(n__fib1(X1, X2)) -> fib1(X1, X2) 311.13/291.55 activate(X) -> X 311.13/291.55 311.13/291.55 S is empty. 311.13/291.55 Rewrite Strategy: FULL 311.13/291.55 ---------------------------------------- 311.13/291.55 311.13/291.55 (6) LowerBoundPropagationProof (FINISHED) 311.13/291.55 Propagated lower bound. 311.13/291.55 ---------------------------------------- 311.13/291.55 311.13/291.55 (7) 311.13/291.55 BOUNDS(n^1, INF) 311.13/291.55 311.13/291.55 ---------------------------------------- 311.13/291.55 311.13/291.55 (8) 311.13/291.55 Obligation: 311.13/291.55 Analyzing the following TRS for decreasing loops: 311.13/291.55 311.13/291.55 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 311.13/291.55 311.13/291.55 311.13/291.55 The TRS R consists of the following rules: 311.13/291.55 311.13/291.55 fib(N) -> sel(N, fib1(s(0), s(0))) 311.13/291.55 fib1(X, Y) -> cons(X, n__fib1(Y, add(X, Y))) 311.13/291.55 add(0, X) -> X 311.13/291.55 add(s(X), Y) -> s(add(X, Y)) 311.13/291.55 sel(0, cons(X, XS)) -> X 311.13/291.55 sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) 311.13/291.55 fib1(X1, X2) -> n__fib1(X1, X2) 311.13/291.55 activate(n__fib1(X1, X2)) -> fib1(X1, X2) 311.13/291.55 activate(X) -> X 311.13/291.55 311.13/291.55 S is empty. 311.13/291.55 Rewrite Strategy: FULL 311.13/291.58 EOF