3.94/1.78 WORST_CASE(Omega(n^1), O(n^1)) 4.23/1.79 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 4.23/1.79 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.23/1.79 4.23/1.79 4.23/1.79 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 4.23/1.79 4.23/1.79 (0) CpxTRS 4.23/1.79 (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] 4.23/1.79 (2) CpxTRS 4.23/1.79 (3) CpxTrsMatchBoundsTAProof [FINISHED, 94 ms] 4.23/1.79 (4) BOUNDS(1, n^1) 4.23/1.79 (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 4.23/1.79 (6) TRS for Loop Detection 4.23/1.79 (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 4.23/1.79 (8) BEST 4.23/1.79 (9) proven lower bound 4.23/1.79 (10) LowerBoundPropagationProof [FINISHED, 0 ms] 4.23/1.79 (11) BOUNDS(n^1, INF) 4.23/1.79 (12) TRS for Loop Detection 4.23/1.79 4.23/1.79 4.23/1.79 ---------------------------------------- 4.23/1.79 4.23/1.79 (0) 4.23/1.79 Obligation: 4.23/1.79 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 4.23/1.79 4.23/1.79 4.23/1.79 The TRS R consists of the following rules: 4.23/1.79 4.23/1.79 a__zeros -> cons(0, zeros) 4.23/1.79 a__tail(cons(X, XS)) -> mark(XS) 4.23/1.79 mark(zeros) -> a__zeros 4.23/1.79 mark(tail(X)) -> a__tail(mark(X)) 4.23/1.79 mark(cons(X1, X2)) -> cons(mark(X1), X2) 4.23/1.79 mark(0) -> 0 4.23/1.79 a__zeros -> zeros 4.23/1.79 a__tail(X) -> tail(X) 4.23/1.79 4.23/1.79 S is empty. 4.23/1.79 Rewrite Strategy: FULL 4.23/1.79 ---------------------------------------- 4.23/1.79 4.23/1.79 (1) RelTrsToTrsProof (UPPER BOUND(ID)) 4.23/1.79 transformed relative TRS to TRS 4.23/1.79 ---------------------------------------- 4.23/1.79 4.23/1.79 (2) 4.23/1.79 Obligation: 4.23/1.79 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). 4.23/1.79 4.23/1.79 4.23/1.79 The TRS R consists of the following rules: 4.23/1.79 4.23/1.79 a__zeros -> cons(0, zeros) 4.23/1.79 a__tail(cons(X, XS)) -> mark(XS) 4.23/1.79 mark(zeros) -> a__zeros 4.23/1.79 mark(tail(X)) -> a__tail(mark(X)) 4.23/1.79 mark(cons(X1, X2)) -> cons(mark(X1), X2) 4.23/1.79 mark(0) -> 0 4.23/1.79 a__zeros -> zeros 4.23/1.79 a__tail(X) -> tail(X) 4.23/1.79 4.23/1.79 S is empty. 4.23/1.79 Rewrite Strategy: FULL 4.23/1.79 ---------------------------------------- 4.23/1.79 4.23/1.79 (3) CpxTrsMatchBoundsTAProof (FINISHED) 4.23/1.79 A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 4. 4.23/1.79 4.23/1.79 The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: 4.23/1.79 final states : [1, 2, 3] 4.23/1.79 transitions: 4.23/1.79 cons0(0, 0) -> 0 4.23/1.79 00() -> 0 4.23/1.79 zeros0() -> 0 4.23/1.79 tail0(0) -> 0 4.23/1.79 a__zeros0() -> 1 4.23/1.79 a__tail0(0) -> 2 4.23/1.79 mark0(0) -> 3 4.23/1.79 01() -> 4 4.23/1.79 zeros1() -> 5 4.23/1.79 cons1(4, 5) -> 1 4.23/1.79 mark1(0) -> 2 4.23/1.79 a__zeros1() -> 3 4.23/1.79 mark1(0) -> 6 4.23/1.79 a__tail1(6) -> 3 4.23/1.79 mark1(0) -> 7 4.23/1.79 cons1(7, 0) -> 3 4.23/1.79 01() -> 3 4.23/1.79 zeros1() -> 1 4.23/1.79 tail1(0) -> 2 4.23/1.79 02() -> 8 4.23/1.79 zeros2() -> 9 4.23/1.79 cons2(8, 9) -> 3 4.23/1.79 a__zeros1() -> 2 4.23/1.79 a__zeros1() -> 6 4.23/1.79 a__zeros1() -> 7 4.23/1.79 a__tail1(6) -> 2 4.23/1.79 a__tail1(6) -> 6 4.23/1.79 a__tail1(6) -> 7 4.23/1.79 cons1(7, 0) -> 2 4.23/1.79 cons1(7, 0) -> 6 4.23/1.79 cons1(7, 0) -> 7 4.23/1.79 01() -> 2 4.23/1.79 01() -> 6 4.23/1.79 01() -> 7 4.23/1.79 zeros2() -> 3 4.23/1.79 tail2(6) -> 3 4.23/1.79 cons2(8, 9) -> 2 4.23/1.79 cons2(8, 9) -> 6 4.23/1.79 cons2(8, 9) -> 7 4.23/1.79 mark2(0) -> 2 4.23/1.79 mark2(0) -> 3 4.23/1.79 mark2(0) -> 6 4.23/1.79 mark2(0) -> 7 4.23/1.79 zeros2() -> 2 4.23/1.79 zeros2() -> 6 4.23/1.79 zeros2() -> 7 4.23/1.79 tail2(6) -> 2 4.23/1.79 tail2(6) -> 6 4.23/1.79 tail2(6) -> 7 4.23/1.79 mark2(9) -> 2 4.23/1.79 mark2(9) -> 3 4.23/1.79 mark2(9) -> 6 4.23/1.79 mark2(9) -> 7 4.23/1.79 a__zeros3() -> 2 4.23/1.79 a__zeros3() -> 3 4.23/1.79 a__zeros3() -> 6 4.23/1.79 a__zeros3() -> 7 4.23/1.79 04() -> 10 4.23/1.79 zeros4() -> 11 4.23/1.79 cons4(10, 11) -> 2 4.23/1.79 cons4(10, 11) -> 3 4.23/1.79 cons4(10, 11) -> 6 4.23/1.79 cons4(10, 11) -> 7 4.23/1.79 zeros4() -> 2 4.23/1.79 zeros4() -> 3 4.23/1.79 zeros4() -> 6 4.23/1.79 zeros4() -> 7 4.23/1.79 mark2(11) -> 2 4.23/1.79 mark2(11) -> 3 4.23/1.79 mark2(11) -> 6 4.23/1.79 mark2(11) -> 7 4.23/1.79 4.23/1.79 ---------------------------------------- 4.23/1.79 4.23/1.79 (4) 4.23/1.79 BOUNDS(1, n^1) 4.23/1.79 4.23/1.79 ---------------------------------------- 4.23/1.79 4.23/1.79 (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 4.23/1.79 Transformed a relative TRS into a decreasing-loop problem. 4.23/1.79 ---------------------------------------- 4.23/1.79 4.23/1.79 (6) 4.23/1.79 Obligation: 4.23/1.79 Analyzing the following TRS for decreasing loops: 4.23/1.79 4.23/1.79 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 4.23/1.79 4.23/1.79 4.23/1.79 The TRS R consists of the following rules: 4.23/1.79 4.23/1.79 a__zeros -> cons(0, zeros) 4.23/1.79 a__tail(cons(X, XS)) -> mark(XS) 4.23/1.79 mark(zeros) -> a__zeros 4.23/1.79 mark(tail(X)) -> a__tail(mark(X)) 4.23/1.79 mark(cons(X1, X2)) -> cons(mark(X1), X2) 4.23/1.79 mark(0) -> 0 4.23/1.79 a__zeros -> zeros 4.23/1.79 a__tail(X) -> tail(X) 4.23/1.79 4.23/1.79 S is empty. 4.23/1.79 Rewrite Strategy: FULL 4.23/1.79 ---------------------------------------- 4.23/1.79 4.23/1.79 (7) DecreasingLoopProof (LOWER BOUND(ID)) 4.23/1.79 The following loop(s) give(s) rise to the lower bound Omega(n^1): 4.23/1.79 4.23/1.79 The rewrite sequence 4.23/1.79 4.23/1.79 mark(tail(X)) ->^+ a__tail(mark(X)) 4.23/1.79 4.23/1.79 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 4.23/1.79 4.23/1.79 The pumping substitution is [X / tail(X)]. 4.23/1.79 4.23/1.79 The result substitution is [ ]. 4.23/1.79 4.23/1.79 4.23/1.79 4.23/1.79 4.23/1.79 ---------------------------------------- 4.23/1.79 4.23/1.79 (8) 4.23/1.79 Complex Obligation (BEST) 4.23/1.79 4.23/1.79 ---------------------------------------- 4.23/1.79 4.23/1.79 (9) 4.23/1.79 Obligation: 4.23/1.79 Proved the lower bound n^1 for the following obligation: 4.23/1.79 4.23/1.79 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 4.23/1.79 4.23/1.79 4.23/1.79 The TRS R consists of the following rules: 4.23/1.79 4.23/1.79 a__zeros -> cons(0, zeros) 4.23/1.79 a__tail(cons(X, XS)) -> mark(XS) 4.23/1.79 mark(zeros) -> a__zeros 4.23/1.79 mark(tail(X)) -> a__tail(mark(X)) 4.23/1.79 mark(cons(X1, X2)) -> cons(mark(X1), X2) 4.23/1.79 mark(0) -> 0 4.23/1.79 a__zeros -> zeros 4.23/1.79 a__tail(X) -> tail(X) 4.23/1.79 4.23/1.79 S is empty. 4.23/1.79 Rewrite Strategy: FULL 4.23/1.79 ---------------------------------------- 4.23/1.79 4.23/1.79 (10) LowerBoundPropagationProof (FINISHED) 4.23/1.79 Propagated lower bound. 4.23/1.79 ---------------------------------------- 4.23/1.79 4.23/1.79 (11) 4.23/1.79 BOUNDS(n^1, INF) 4.23/1.79 4.23/1.79 ---------------------------------------- 4.23/1.79 4.23/1.79 (12) 4.23/1.79 Obligation: 4.23/1.79 Analyzing the following TRS for decreasing loops: 4.23/1.79 4.23/1.79 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 4.23/1.79 4.23/1.79 4.23/1.79 The TRS R consists of the following rules: 4.23/1.79 4.23/1.79 a__zeros -> cons(0, zeros) 4.23/1.79 a__tail(cons(X, XS)) -> mark(XS) 4.23/1.79 mark(zeros) -> a__zeros 4.23/1.79 mark(tail(X)) -> a__tail(mark(X)) 4.23/1.79 mark(cons(X1, X2)) -> cons(mark(X1), X2) 4.23/1.79 mark(0) -> 0 4.23/1.79 a__zeros -> zeros 4.23/1.79 a__tail(X) -> tail(X) 4.23/1.79 4.23/1.79 S is empty. 4.23/1.79 Rewrite Strategy: FULL 4.26/2.36 EOF