3.14/1.70 WORST_CASE(NON_POLY, ?) 3.41/1.71 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 3.41/1.71 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.41/1.71 3.41/1.71 3.41/1.71 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.41/1.71 3.41/1.71 (0) CpxTRS 3.41/1.71 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.41/1.71 (2) TRS for Loop Detection 3.41/1.71 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.41/1.71 (4) BEST 3.41/1.71 (5) proven lower bound 3.41/1.71 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 3.41/1.71 (7) BOUNDS(n^1, INF) 3.41/1.71 (8) TRS for Loop Detection 3.41/1.71 (9) DecreasingLoopProof [FINISHED, 0 ms] 3.41/1.71 (10) BOUNDS(EXP, INF) 3.41/1.71 3.41/1.71 3.41/1.71 ---------------------------------------- 3.41/1.71 3.41/1.71 (0) 3.41/1.71 Obligation: 3.41/1.71 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.41/1.71 3.41/1.71 3.41/1.71 The TRS R consists of the following rules: 3.41/1.71 3.41/1.71 f(g(X), Y) -> f(X, n__f(n__g(X), activate(Y))) 3.41/1.71 f(X1, X2) -> n__f(X1, X2) 3.41/1.71 g(X) -> n__g(X) 3.41/1.71 activate(n__f(X1, X2)) -> f(activate(X1), X2) 3.41/1.71 activate(n__g(X)) -> g(activate(X)) 3.41/1.71 activate(X) -> X 3.41/1.71 3.41/1.71 S is empty. 3.41/1.71 Rewrite Strategy: FULL 3.41/1.71 ---------------------------------------- 3.41/1.71 3.41/1.71 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.41/1.71 Transformed a relative TRS into a decreasing-loop problem. 3.41/1.71 ---------------------------------------- 3.41/1.71 3.41/1.71 (2) 3.41/1.71 Obligation: 3.41/1.71 Analyzing the following TRS for decreasing loops: 3.41/1.71 3.41/1.71 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.41/1.71 3.41/1.71 3.41/1.71 The TRS R consists of the following rules: 3.41/1.71 3.41/1.71 f(g(X), Y) -> f(X, n__f(n__g(X), activate(Y))) 3.41/1.71 f(X1, X2) -> n__f(X1, X2) 3.41/1.71 g(X) -> n__g(X) 3.41/1.71 activate(n__f(X1, X2)) -> f(activate(X1), X2) 3.41/1.71 activate(n__g(X)) -> g(activate(X)) 3.41/1.71 activate(X) -> X 3.41/1.71 3.41/1.71 S is empty. 3.41/1.71 Rewrite Strategy: FULL 3.41/1.71 ---------------------------------------- 3.41/1.71 3.41/1.71 (3) DecreasingLoopProof (LOWER BOUND(ID)) 3.41/1.71 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.41/1.71 3.41/1.71 The rewrite sequence 3.41/1.71 3.41/1.71 activate(n__f(X1, X2)) ->^+ f(activate(X1), X2) 3.41/1.71 3.41/1.71 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.41/1.71 3.41/1.71 The pumping substitution is [X1 / n__f(X1, X2)]. 3.41/1.71 3.41/1.71 The result substitution is [ ]. 3.41/1.71 3.41/1.71 3.41/1.71 3.41/1.71 3.41/1.71 ---------------------------------------- 3.41/1.71 3.41/1.71 (4) 3.41/1.71 Complex Obligation (BEST) 3.41/1.71 3.41/1.71 ---------------------------------------- 3.41/1.71 3.41/1.71 (5) 3.41/1.71 Obligation: 3.41/1.71 Proved the lower bound n^1 for the following obligation: 3.41/1.71 3.41/1.71 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.41/1.71 3.41/1.71 3.41/1.71 The TRS R consists of the following rules: 3.41/1.71 3.41/1.71 f(g(X), Y) -> f(X, n__f(n__g(X), activate(Y))) 3.41/1.71 f(X1, X2) -> n__f(X1, X2) 3.41/1.71 g(X) -> n__g(X) 3.41/1.71 activate(n__f(X1, X2)) -> f(activate(X1), X2) 3.41/1.71 activate(n__g(X)) -> g(activate(X)) 3.41/1.71 activate(X) -> X 3.41/1.71 3.41/1.71 S is empty. 3.41/1.71 Rewrite Strategy: FULL 3.41/1.71 ---------------------------------------- 3.41/1.71 3.41/1.71 (6) LowerBoundPropagationProof (FINISHED) 3.41/1.71 Propagated lower bound. 3.41/1.71 ---------------------------------------- 3.41/1.71 3.41/1.71 (7) 3.41/1.71 BOUNDS(n^1, INF) 3.41/1.71 3.41/1.71 ---------------------------------------- 3.41/1.71 3.41/1.71 (8) 3.41/1.71 Obligation: 3.41/1.71 Analyzing the following TRS for decreasing loops: 3.41/1.71 3.41/1.71 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.41/1.71 3.41/1.71 3.41/1.71 The TRS R consists of the following rules: 3.41/1.71 3.41/1.71 f(g(X), Y) -> f(X, n__f(n__g(X), activate(Y))) 3.41/1.71 f(X1, X2) -> n__f(X1, X2) 3.41/1.71 g(X) -> n__g(X) 3.41/1.71 activate(n__f(X1, X2)) -> f(activate(X1), X2) 3.41/1.71 activate(n__g(X)) -> g(activate(X)) 3.41/1.71 activate(X) -> X 3.41/1.71 3.41/1.71 S is empty. 3.41/1.71 Rewrite Strategy: FULL 3.41/1.71 ---------------------------------------- 3.41/1.71 3.41/1.71 (9) DecreasingLoopProof (FINISHED) 3.41/1.71 The following loop(s) give(s) rise to the lower bound EXP: 3.41/1.71 3.41/1.71 The rewrite sequence 3.41/1.71 3.41/1.71 activate(n__f(n__g(X1_0), X2)) ->^+ f(activate(X1_0), n__f(n__g(activate(X1_0)), activate(X2))) 3.41/1.71 3.41/1.71 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.41/1.71 3.41/1.71 The pumping substitution is [X1_0 / n__f(n__g(X1_0), X2)]. 3.41/1.71 3.41/1.71 The result substitution is [ ]. 3.41/1.71 3.41/1.71 3.41/1.71 3.41/1.71 The rewrite sequence 3.41/1.71 3.41/1.71 activate(n__f(n__g(X1_0), X2)) ->^+ f(activate(X1_0), n__f(n__g(activate(X1_0)), activate(X2))) 3.41/1.71 3.41/1.71 gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0,0]. 3.41/1.71 3.41/1.71 The pumping substitution is [X1_0 / n__f(n__g(X1_0), X2)]. 3.41/1.71 3.41/1.71 The result substitution is [ ]. 3.41/1.71 3.41/1.71 3.41/1.71 3.41/1.71 3.41/1.71 ---------------------------------------- 3.41/1.71 3.41/1.71 (10) 3.41/1.71 BOUNDS(EXP, INF) 3.41/1.73 EOF