2.77/1.56 WORST_CASE(NON_POLY, ?) 2.77/1.57 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 2.77/1.57 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 2.77/1.57 2.77/1.57 2.77/1.57 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 2.77/1.57 2.77/1.57 (0) CpxTRS 2.77/1.57 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 2.77/1.57 (2) TRS for Loop Detection 2.77/1.57 (3) InfiniteLowerBoundProof [FINISHED, 0 ms] 2.77/1.57 (4) BOUNDS(INF, INF) 2.77/1.57 2.77/1.57 2.77/1.57 ---------------------------------------- 2.77/1.57 2.77/1.57 (0) 2.77/1.57 Obligation: 2.77/1.57 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 2.77/1.57 2.77/1.57 2.77/1.57 The TRS R consists of the following rules: 2.77/1.57 2.77/1.57 fact(X) -> if(zero(X), n__s(0), n__prod(X, fact(p(X)))) 2.77/1.57 add(0, X) -> X 2.77/1.57 add(s(X), Y) -> s(add(X, Y)) 2.77/1.57 prod(0, X) -> 0 2.77/1.57 prod(s(X), Y) -> add(Y, prod(X, Y)) 2.77/1.57 if(true, X, Y) -> activate(X) 2.77/1.57 if(false, X, Y) -> activate(Y) 2.77/1.57 zero(0) -> true 2.77/1.57 zero(s(X)) -> false 2.77/1.57 p(s(X)) -> X 2.77/1.57 s(X) -> n__s(X) 2.77/1.57 prod(X1, X2) -> n__prod(X1, X2) 2.77/1.57 activate(n__s(X)) -> s(X) 2.77/1.57 activate(n__prod(X1, X2)) -> prod(X1, X2) 2.77/1.57 activate(X) -> X 2.77/1.57 2.77/1.57 S is empty. 2.77/1.57 Rewrite Strategy: FULL 2.77/1.57 ---------------------------------------- 2.77/1.57 2.77/1.57 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 2.77/1.57 Transformed a relative TRS into a decreasing-loop problem. 2.77/1.57 ---------------------------------------- 2.77/1.57 2.77/1.57 (2) 2.77/1.57 Obligation: 2.77/1.57 Analyzing the following TRS for decreasing loops: 2.77/1.57 2.77/1.57 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 2.77/1.57 2.77/1.57 2.77/1.57 The TRS R consists of the following rules: 2.77/1.57 2.77/1.57 fact(X) -> if(zero(X), n__s(0), n__prod(X, fact(p(X)))) 2.77/1.57 add(0, X) -> X 2.77/1.57 add(s(X), Y) -> s(add(X, Y)) 2.77/1.57 prod(0, X) -> 0 2.77/1.57 prod(s(X), Y) -> add(Y, prod(X, Y)) 2.77/1.57 if(true, X, Y) -> activate(X) 2.77/1.57 if(false, X, Y) -> activate(Y) 2.77/1.57 zero(0) -> true 2.77/1.57 zero(s(X)) -> false 2.77/1.57 p(s(X)) -> X 2.77/1.57 s(X) -> n__s(X) 2.77/1.57 prod(X1, X2) -> n__prod(X1, X2) 2.77/1.57 activate(n__s(X)) -> s(X) 2.77/1.57 activate(n__prod(X1, X2)) -> prod(X1, X2) 2.77/1.57 activate(X) -> X 2.77/1.57 2.77/1.57 S is empty. 2.77/1.57 Rewrite Strategy: FULL 2.77/1.57 ---------------------------------------- 2.77/1.57 2.77/1.57 (3) InfiniteLowerBoundProof (FINISHED) 2.77/1.57 The following loop proves infinite runtime complexity: 2.77/1.57 2.77/1.57 The rewrite sequence 2.77/1.57 2.77/1.57 fact(X) ->^+ if(zero(X), n__s(0), n__prod(X, fact(p(X)))) 2.77/1.57 2.77/1.57 gives rise to a decreasing loop by considering the right hand sides subterm at position [2,1]. 2.77/1.57 2.77/1.57 The pumping substitution is [ ]. 2.77/1.57 2.77/1.57 The result substitution is [X / p(X)]. 2.77/1.57 2.77/1.57 2.77/1.57 2.77/1.57 2.77/1.57 ---------------------------------------- 2.77/1.57 2.77/1.57 (4) 2.77/1.57 BOUNDS(INF, INF) 2.98/1.61 EOF