3.35/1.71 WORST_CASE(NON_POLY, ?) 3.35/1.72 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.35/1.72 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.35/1.72 3.35/1.72 3.35/1.72 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.35/1.72 3.35/1.72 (0) CpxTRS 3.35/1.72 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.35/1.72 (2) TRS for Loop Detection 3.35/1.72 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.35/1.72 (4) BEST 3.35/1.72 (5) proven lower bound 3.35/1.72 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 3.35/1.72 (7) BOUNDS(n^1, INF) 3.35/1.72 (8) TRS for Loop Detection 3.35/1.72 (9) DecreasingLoopProof [FINISHED, 16 ms] 3.35/1.72 (10) BOUNDS(EXP, INF) 3.35/1.72 3.35/1.72 3.35/1.72 ---------------------------------------- 3.35/1.72 3.35/1.72 (0) 3.35/1.72 Obligation: 3.35/1.72 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.35/1.72 3.35/1.72 3.35/1.72 The TRS R consists of the following rules: 3.35/1.72 3.35/1.72 U11(tt, N, X, XS) -> U12(splitAt(activate(N), activate(XS)), activate(X)) 3.35/1.72 U12(pair(YS, ZS), X) -> pair(cons(activate(X), YS), ZS) 3.35/1.72 afterNth(N, XS) -> snd(splitAt(N, XS)) 3.35/1.72 and(tt, X) -> activate(X) 3.35/1.72 fst(pair(X, Y)) -> X 3.35/1.72 head(cons(N, XS)) -> N 3.35/1.72 natsFrom(N) -> cons(N, n__natsFrom(n__s(N))) 3.35/1.72 sel(N, XS) -> head(afterNth(N, XS)) 3.35/1.72 snd(pair(X, Y)) -> Y 3.35/1.72 splitAt(0, XS) -> pair(nil, XS) 3.35/1.72 splitAt(s(N), cons(X, XS)) -> U11(tt, N, X, activate(XS)) 3.35/1.72 tail(cons(N, XS)) -> activate(XS) 3.35/1.72 take(N, XS) -> fst(splitAt(N, XS)) 3.35/1.72 natsFrom(X) -> n__natsFrom(X) 3.35/1.72 s(X) -> n__s(X) 3.35/1.72 activate(n__natsFrom(X)) -> natsFrom(activate(X)) 3.35/1.72 activate(n__s(X)) -> s(activate(X)) 3.35/1.72 activate(X) -> X 3.35/1.72 3.35/1.72 S is empty. 3.35/1.72 Rewrite Strategy: FULL 3.35/1.72 ---------------------------------------- 3.35/1.72 3.35/1.72 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.35/1.72 Transformed a relative TRS into a decreasing-loop problem. 3.35/1.72 ---------------------------------------- 3.35/1.72 3.35/1.72 (2) 3.35/1.72 Obligation: 3.35/1.72 Analyzing the following TRS for decreasing loops: 3.35/1.72 3.35/1.72 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.35/1.72 3.35/1.72 3.35/1.72 The TRS R consists of the following rules: 3.35/1.72 3.35/1.72 U11(tt, N, X, XS) -> U12(splitAt(activate(N), activate(XS)), activate(X)) 3.35/1.72 U12(pair(YS, ZS), X) -> pair(cons(activate(X), YS), ZS) 3.35/1.72 afterNth(N, XS) -> snd(splitAt(N, XS)) 3.35/1.72 and(tt, X) -> activate(X) 3.35/1.72 fst(pair(X, Y)) -> X 3.35/1.72 head(cons(N, XS)) -> N 3.35/1.72 natsFrom(N) -> cons(N, n__natsFrom(n__s(N))) 3.35/1.72 sel(N, XS) -> head(afterNth(N, XS)) 3.35/1.72 snd(pair(X, Y)) -> Y 3.35/1.72 splitAt(0, XS) -> pair(nil, XS) 3.35/1.72 splitAt(s(N), cons(X, XS)) -> U11(tt, N, X, activate(XS)) 3.35/1.72 tail(cons(N, XS)) -> activate(XS) 3.35/1.72 take(N, XS) -> fst(splitAt(N, XS)) 3.35/1.72 natsFrom(X) -> n__natsFrom(X) 3.35/1.72 s(X) -> n__s(X) 3.35/1.72 activate(n__natsFrom(X)) -> natsFrom(activate(X)) 3.35/1.72 activate(n__s(X)) -> s(activate(X)) 3.35/1.72 activate(X) -> X 3.35/1.72 3.35/1.72 S is empty. 3.35/1.72 Rewrite Strategy: FULL 3.35/1.72 ---------------------------------------- 3.35/1.72 3.35/1.72 (3) DecreasingLoopProof (LOWER BOUND(ID)) 3.35/1.72 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.35/1.72 3.35/1.72 The rewrite sequence 3.35/1.72 3.35/1.72 activate(n__s(X)) ->^+ s(activate(X)) 3.35/1.72 3.35/1.72 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.35/1.72 3.35/1.72 The pumping substitution is [X / n__s(X)]. 3.35/1.72 3.35/1.72 The result substitution is [ ]. 3.35/1.72 3.35/1.72 3.35/1.72 3.35/1.72 3.35/1.72 ---------------------------------------- 3.35/1.72 3.35/1.72 (4) 3.35/1.72 Complex Obligation (BEST) 3.35/1.72 3.35/1.72 ---------------------------------------- 3.35/1.72 3.35/1.72 (5) 3.35/1.72 Obligation: 3.35/1.72 Proved the lower bound n^1 for the following obligation: 3.35/1.72 3.35/1.72 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.35/1.72 3.35/1.72 3.35/1.72 The TRS R consists of the following rules: 3.35/1.72 3.35/1.72 U11(tt, N, X, XS) -> U12(splitAt(activate(N), activate(XS)), activate(X)) 3.35/1.72 U12(pair(YS, ZS), X) -> pair(cons(activate(X), YS), ZS) 3.35/1.72 afterNth(N, XS) -> snd(splitAt(N, XS)) 3.35/1.72 and(tt, X) -> activate(X) 3.35/1.72 fst(pair(X, Y)) -> X 3.35/1.72 head(cons(N, XS)) -> N 3.35/1.72 natsFrom(N) -> cons(N, n__natsFrom(n__s(N))) 3.35/1.72 sel(N, XS) -> head(afterNth(N, XS)) 3.35/1.72 snd(pair(X, Y)) -> Y 3.35/1.72 splitAt(0, XS) -> pair(nil, XS) 3.35/1.72 splitAt(s(N), cons(X, XS)) -> U11(tt, N, X, activate(XS)) 3.35/1.72 tail(cons(N, XS)) -> activate(XS) 3.35/1.72 take(N, XS) -> fst(splitAt(N, XS)) 3.35/1.72 natsFrom(X) -> n__natsFrom(X) 3.35/1.72 s(X) -> n__s(X) 3.35/1.72 activate(n__natsFrom(X)) -> natsFrom(activate(X)) 3.35/1.72 activate(n__s(X)) -> s(activate(X)) 3.35/1.72 activate(X) -> X 3.35/1.72 3.35/1.72 S is empty. 3.35/1.72 Rewrite Strategy: FULL 3.35/1.72 ---------------------------------------- 3.35/1.72 3.35/1.72 (6) LowerBoundPropagationProof (FINISHED) 3.35/1.72 Propagated lower bound. 3.35/1.72 ---------------------------------------- 3.35/1.72 3.35/1.72 (7) 3.35/1.72 BOUNDS(n^1, INF) 3.35/1.72 3.35/1.72 ---------------------------------------- 3.35/1.72 3.35/1.72 (8) 3.35/1.72 Obligation: 3.35/1.72 Analyzing the following TRS for decreasing loops: 3.35/1.72 3.35/1.72 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.35/1.72 3.35/1.72 3.35/1.72 The TRS R consists of the following rules: 3.35/1.72 3.35/1.72 U11(tt, N, X, XS) -> U12(splitAt(activate(N), activate(XS)), activate(X)) 3.35/1.72 U12(pair(YS, ZS), X) -> pair(cons(activate(X), YS), ZS) 3.35/1.72 afterNth(N, XS) -> snd(splitAt(N, XS)) 3.35/1.72 and(tt, X) -> activate(X) 3.35/1.72 fst(pair(X, Y)) -> X 3.35/1.72 head(cons(N, XS)) -> N 3.35/1.72 natsFrom(N) -> cons(N, n__natsFrom(n__s(N))) 3.35/1.72 sel(N, XS) -> head(afterNth(N, XS)) 3.35/1.72 snd(pair(X, Y)) -> Y 3.35/1.72 splitAt(0, XS) -> pair(nil, XS) 3.35/1.72 splitAt(s(N), cons(X, XS)) -> U11(tt, N, X, activate(XS)) 3.35/1.72 tail(cons(N, XS)) -> activate(XS) 3.35/1.72 take(N, XS) -> fst(splitAt(N, XS)) 3.35/1.72 natsFrom(X) -> n__natsFrom(X) 3.35/1.72 s(X) -> n__s(X) 3.35/1.72 activate(n__natsFrom(X)) -> natsFrom(activate(X)) 3.35/1.72 activate(n__s(X)) -> s(activate(X)) 3.35/1.72 activate(X) -> X 3.35/1.72 3.35/1.72 S is empty. 3.35/1.72 Rewrite Strategy: FULL 3.35/1.72 ---------------------------------------- 3.35/1.72 3.35/1.72 (9) DecreasingLoopProof (FINISHED) 3.35/1.72 The following loop(s) give(s) rise to the lower bound EXP: 3.35/1.72 3.35/1.72 The rewrite sequence 3.35/1.72 3.35/1.72 activate(n__natsFrom(X)) ->^+ cons(activate(X), n__natsFrom(n__s(activate(X)))) 3.35/1.72 3.35/1.72 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.35/1.72 3.35/1.72 The pumping substitution is [X / n__natsFrom(X)]. 3.35/1.72 3.35/1.72 The result substitution is [ ]. 3.35/1.72 3.35/1.72 3.35/1.72 3.35/1.72 The rewrite sequence 3.35/1.72 3.35/1.72 activate(n__natsFrom(X)) ->^+ cons(activate(X), n__natsFrom(n__s(activate(X)))) 3.35/1.72 3.35/1.72 gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0,0]. 3.35/1.72 3.35/1.72 The pumping substitution is [X / n__natsFrom(X)]. 3.35/1.72 3.35/1.72 The result substitution is [ ]. 3.35/1.72 3.35/1.72 3.35/1.72 3.35/1.72 3.35/1.72 ---------------------------------------- 3.35/1.72 3.35/1.72 (10) 3.35/1.72 BOUNDS(EXP, INF) 3.35/1.76 EOF