3.63/1.68 WORST_CASE(NON_POLY, ?) 3.63/1.69 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.63/1.69 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.63/1.69 3.63/1.69 3.63/1.69 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.63/1.69 3.63/1.69 (0) CpxTRS 3.63/1.69 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.63/1.69 (2) TRS for Loop Detection 3.63/1.69 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.63/1.69 (4) BEST 3.63/1.69 (5) proven lower bound 3.63/1.69 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 3.63/1.69 (7) BOUNDS(n^1, INF) 3.63/1.69 (8) TRS for Loop Detection 3.63/1.69 (9) DecreasingLoopProof [FINISHED, 28 ms] 3.63/1.69 (10) BOUNDS(EXP, INF) 3.63/1.69 3.63/1.69 3.63/1.69 ---------------------------------------- 3.63/1.69 3.63/1.69 (0) 3.63/1.69 Obligation: 3.63/1.69 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.63/1.69 3.63/1.69 3.63/1.69 The TRS R consists of the following rules: 3.63/1.69 3.63/1.69 filter(cons(X, Y), 0, M) -> cons(0, n__filter(activate(Y), M, M)) 3.63/1.69 filter(cons(X, Y), s(N), M) -> cons(X, n__filter(activate(Y), N, M)) 3.63/1.69 sieve(cons(0, Y)) -> cons(0, n__sieve(activate(Y))) 3.63/1.69 sieve(cons(s(N), Y)) -> cons(s(N), n__sieve(n__filter(activate(Y), N, N))) 3.63/1.69 nats(N) -> cons(N, n__nats(n__s(N))) 3.63/1.69 zprimes -> sieve(nats(s(s(0)))) 3.63/1.69 filter(X1, X2, X3) -> n__filter(X1, X2, X3) 3.63/1.69 sieve(X) -> n__sieve(X) 3.63/1.69 nats(X) -> n__nats(X) 3.63/1.69 s(X) -> n__s(X) 3.63/1.69 activate(n__filter(X1, X2, X3)) -> filter(activate(X1), activate(X2), activate(X3)) 3.63/1.69 activate(n__sieve(X)) -> sieve(activate(X)) 3.63/1.69 activate(n__nats(X)) -> nats(activate(X)) 3.63/1.69 activate(n__s(X)) -> s(activate(X)) 3.63/1.69 activate(X) -> X 3.63/1.69 3.63/1.69 S is empty. 3.63/1.69 Rewrite Strategy: FULL 3.63/1.69 ---------------------------------------- 3.63/1.69 3.63/1.69 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.63/1.69 Transformed a relative TRS into a decreasing-loop problem. 3.63/1.69 ---------------------------------------- 3.63/1.69 3.63/1.69 (2) 3.63/1.69 Obligation: 3.63/1.69 Analyzing the following TRS for decreasing loops: 3.63/1.69 3.63/1.69 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.63/1.69 3.63/1.69 3.63/1.69 The TRS R consists of the following rules: 3.63/1.69 3.63/1.69 filter(cons(X, Y), 0, M) -> cons(0, n__filter(activate(Y), M, M)) 3.63/1.69 filter(cons(X, Y), s(N), M) -> cons(X, n__filter(activate(Y), N, M)) 3.63/1.69 sieve(cons(0, Y)) -> cons(0, n__sieve(activate(Y))) 3.63/1.69 sieve(cons(s(N), Y)) -> cons(s(N), n__sieve(n__filter(activate(Y), N, N))) 3.63/1.69 nats(N) -> cons(N, n__nats(n__s(N))) 3.63/1.69 zprimes -> sieve(nats(s(s(0)))) 3.63/1.69 filter(X1, X2, X3) -> n__filter(X1, X2, X3) 3.63/1.69 sieve(X) -> n__sieve(X) 3.63/1.69 nats(X) -> n__nats(X) 3.63/1.69 s(X) -> n__s(X) 3.63/1.69 activate(n__filter(X1, X2, X3)) -> filter(activate(X1), activate(X2), activate(X3)) 3.63/1.69 activate(n__sieve(X)) -> sieve(activate(X)) 3.63/1.69 activate(n__nats(X)) -> nats(activate(X)) 3.63/1.69 activate(n__s(X)) -> s(activate(X)) 3.63/1.69 activate(X) -> X 3.63/1.69 3.63/1.69 S is empty. 3.63/1.69 Rewrite Strategy: FULL 3.63/1.69 ---------------------------------------- 3.63/1.69 3.63/1.69 (3) DecreasingLoopProof (LOWER BOUND(ID)) 3.63/1.69 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.63/1.69 3.63/1.69 The rewrite sequence 3.63/1.69 3.63/1.69 activate(n__s(X)) ->^+ s(activate(X)) 3.63/1.69 3.63/1.69 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.63/1.69 3.63/1.69 The pumping substitution is [X / n__s(X)]. 3.63/1.69 3.63/1.69 The result substitution is [ ]. 3.63/1.69 3.63/1.69 3.63/1.69 3.63/1.69 3.63/1.69 ---------------------------------------- 3.63/1.69 3.63/1.69 (4) 3.63/1.69 Complex Obligation (BEST) 3.63/1.69 3.63/1.69 ---------------------------------------- 3.63/1.69 3.63/1.69 (5) 3.63/1.69 Obligation: 3.63/1.69 Proved the lower bound n^1 for the following obligation: 3.63/1.69 3.63/1.69 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.63/1.69 3.63/1.69 3.63/1.69 The TRS R consists of the following rules: 3.63/1.69 3.63/1.69 filter(cons(X, Y), 0, M) -> cons(0, n__filter(activate(Y), M, M)) 3.63/1.69 filter(cons(X, Y), s(N), M) -> cons(X, n__filter(activate(Y), N, M)) 3.63/1.69 sieve(cons(0, Y)) -> cons(0, n__sieve(activate(Y))) 3.63/1.69 sieve(cons(s(N), Y)) -> cons(s(N), n__sieve(n__filter(activate(Y), N, N))) 3.63/1.69 nats(N) -> cons(N, n__nats(n__s(N))) 3.63/1.69 zprimes -> sieve(nats(s(s(0)))) 3.63/1.69 filter(X1, X2, X3) -> n__filter(X1, X2, X3) 3.63/1.69 sieve(X) -> n__sieve(X) 3.63/1.69 nats(X) -> n__nats(X) 3.63/1.69 s(X) -> n__s(X) 3.63/1.69 activate(n__filter(X1, X2, X3)) -> filter(activate(X1), activate(X2), activate(X3)) 3.63/1.69 activate(n__sieve(X)) -> sieve(activate(X)) 3.63/1.69 activate(n__nats(X)) -> nats(activate(X)) 3.63/1.69 activate(n__s(X)) -> s(activate(X)) 3.63/1.69 activate(X) -> X 3.63/1.69 3.63/1.69 S is empty. 3.63/1.69 Rewrite Strategy: FULL 3.63/1.69 ---------------------------------------- 3.63/1.69 3.63/1.69 (6) LowerBoundPropagationProof (FINISHED) 3.63/1.69 Propagated lower bound. 3.63/1.69 ---------------------------------------- 3.63/1.69 3.63/1.69 (7) 3.63/1.69 BOUNDS(n^1, INF) 3.63/1.69 3.63/1.69 ---------------------------------------- 3.63/1.69 3.63/1.69 (8) 3.63/1.69 Obligation: 3.63/1.69 Analyzing the following TRS for decreasing loops: 3.63/1.69 3.63/1.69 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.63/1.69 3.63/1.69 3.63/1.69 The TRS R consists of the following rules: 3.63/1.69 3.63/1.69 filter(cons(X, Y), 0, M) -> cons(0, n__filter(activate(Y), M, M)) 3.63/1.69 filter(cons(X, Y), s(N), M) -> cons(X, n__filter(activate(Y), N, M)) 3.63/1.69 sieve(cons(0, Y)) -> cons(0, n__sieve(activate(Y))) 3.63/1.69 sieve(cons(s(N), Y)) -> cons(s(N), n__sieve(n__filter(activate(Y), N, N))) 3.63/1.69 nats(N) -> cons(N, n__nats(n__s(N))) 3.63/1.69 zprimes -> sieve(nats(s(s(0)))) 3.63/1.69 filter(X1, X2, X3) -> n__filter(X1, X2, X3) 3.63/1.69 sieve(X) -> n__sieve(X) 3.63/1.69 nats(X) -> n__nats(X) 3.63/1.69 s(X) -> n__s(X) 3.63/1.69 activate(n__filter(X1, X2, X3)) -> filter(activate(X1), activate(X2), activate(X3)) 3.63/1.69 activate(n__sieve(X)) -> sieve(activate(X)) 3.63/1.69 activate(n__nats(X)) -> nats(activate(X)) 3.63/1.69 activate(n__s(X)) -> s(activate(X)) 3.63/1.69 activate(X) -> X 3.63/1.69 3.63/1.69 S is empty. 3.63/1.69 Rewrite Strategy: FULL 3.63/1.69 ---------------------------------------- 3.63/1.69 3.63/1.69 (9) DecreasingLoopProof (FINISHED) 3.63/1.69 The following loop(s) give(s) rise to the lower bound EXP: 3.63/1.69 3.63/1.69 The rewrite sequence 3.63/1.69 3.63/1.69 activate(n__nats(X)) ->^+ cons(activate(X), n__nats(n__s(activate(X)))) 3.63/1.69 3.63/1.69 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.63/1.69 3.63/1.69 The pumping substitution is [X / n__nats(X)]. 3.63/1.69 3.63/1.69 The result substitution is [ ]. 3.63/1.69 3.63/1.69 3.63/1.69 3.63/1.69 The rewrite sequence 3.63/1.69 3.63/1.69 activate(n__nats(X)) ->^+ cons(activate(X), n__nats(n__s(activate(X)))) 3.63/1.69 3.63/1.69 gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0,0]. 3.63/1.69 3.63/1.69 The pumping substitution is [X / n__nats(X)]. 3.63/1.69 3.63/1.69 The result substitution is [ ]. 3.63/1.69 3.63/1.69 3.63/1.69 3.63/1.69 3.63/1.69 ---------------------------------------- 3.63/1.69 3.63/1.69 (10) 3.63/1.69 BOUNDS(EXP, INF) 3.73/1.72 EOF