3.14/1.57 WORST_CASE(NON_POLY, ?) 3.14/1.58 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.14/1.58 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.14/1.58 3.14/1.58 3.14/1.58 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.14/1.58 3.14/1.58 (0) CpxTRS 3.14/1.58 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.14/1.58 (2) TRS for Loop Detection 3.14/1.58 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.14/1.58 (4) BEST 3.14/1.58 (5) proven lower bound 3.14/1.58 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 3.14/1.58 (7) BOUNDS(n^1, INF) 3.14/1.58 (8) TRS for Loop Detection 3.14/1.58 (9) DecreasingLoopProof [FINISHED, 39 ms] 3.14/1.58 (10) BOUNDS(EXP, INF) 3.14/1.58 3.14/1.58 3.14/1.58 ---------------------------------------- 3.14/1.58 3.14/1.58 (0) 3.14/1.58 Obligation: 3.14/1.58 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.14/1.58 3.14/1.58 3.14/1.58 The TRS R consists of the following rules: 3.14/1.58 3.14/1.58 a__f(X) -> cons(mark(X), f(g(X))) 3.14/1.58 a__g(0) -> s(0) 3.14/1.58 a__g(s(X)) -> s(s(a__g(mark(X)))) 3.14/1.58 a__sel(0, cons(X, Y)) -> mark(X) 3.14/1.58 a__sel(s(X), cons(Y, Z)) -> a__sel(mark(X), mark(Z)) 3.14/1.58 mark(f(X)) -> a__f(mark(X)) 3.14/1.58 mark(g(X)) -> a__g(mark(X)) 3.14/1.58 mark(sel(X1, X2)) -> a__sel(mark(X1), mark(X2)) 3.14/1.58 mark(cons(X1, X2)) -> cons(mark(X1), X2) 3.14/1.58 mark(0) -> 0 3.14/1.58 mark(s(X)) -> s(mark(X)) 3.14/1.58 a__f(X) -> f(X) 3.14/1.58 a__g(X) -> g(X) 3.14/1.58 a__sel(X1, X2) -> sel(X1, X2) 3.14/1.58 3.14/1.58 S is empty. 3.14/1.58 Rewrite Strategy: FULL 3.14/1.58 ---------------------------------------- 3.14/1.58 3.14/1.58 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.14/1.58 Transformed a relative TRS into a decreasing-loop problem. 3.14/1.58 ---------------------------------------- 3.14/1.58 3.14/1.58 (2) 3.14/1.58 Obligation: 3.14/1.58 Analyzing the following TRS for decreasing loops: 3.14/1.58 3.14/1.58 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.14/1.58 3.14/1.58 3.14/1.58 The TRS R consists of the following rules: 3.14/1.58 3.14/1.58 a__f(X) -> cons(mark(X), f(g(X))) 3.14/1.58 a__g(0) -> s(0) 3.14/1.58 a__g(s(X)) -> s(s(a__g(mark(X)))) 3.14/1.58 a__sel(0, cons(X, Y)) -> mark(X) 3.14/1.58 a__sel(s(X), cons(Y, Z)) -> a__sel(mark(X), mark(Z)) 3.14/1.58 mark(f(X)) -> a__f(mark(X)) 3.14/1.58 mark(g(X)) -> a__g(mark(X)) 3.14/1.58 mark(sel(X1, X2)) -> a__sel(mark(X1), mark(X2)) 3.14/1.58 mark(cons(X1, X2)) -> cons(mark(X1), X2) 3.14/1.58 mark(0) -> 0 3.14/1.58 mark(s(X)) -> s(mark(X)) 3.14/1.58 a__f(X) -> f(X) 3.14/1.58 a__g(X) -> g(X) 3.14/1.58 a__sel(X1, X2) -> sel(X1, X2) 3.14/1.58 3.14/1.58 S is empty. 3.14/1.58 Rewrite Strategy: FULL 3.14/1.58 ---------------------------------------- 3.14/1.58 3.14/1.58 (3) DecreasingLoopProof (LOWER BOUND(ID)) 3.14/1.58 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.14/1.58 3.14/1.58 The rewrite sequence 3.14/1.58 3.14/1.58 mark(f(X)) ->^+ a__f(mark(X)) 3.14/1.58 3.14/1.58 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.14/1.58 3.14/1.58 The pumping substitution is [X / f(X)]. 3.14/1.58 3.14/1.58 The result substitution is [ ]. 3.14/1.58 3.14/1.58 3.14/1.58 3.14/1.58 3.14/1.58 ---------------------------------------- 3.14/1.58 3.14/1.58 (4) 3.14/1.58 Complex Obligation (BEST) 3.14/1.58 3.14/1.58 ---------------------------------------- 3.14/1.58 3.14/1.58 (5) 3.14/1.58 Obligation: 3.14/1.58 Proved the lower bound n^1 for the following obligation: 3.14/1.58 3.14/1.58 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.14/1.58 3.14/1.58 3.14/1.58 The TRS R consists of the following rules: 3.14/1.58 3.14/1.58 a__f(X) -> cons(mark(X), f(g(X))) 3.14/1.58 a__g(0) -> s(0) 3.14/1.58 a__g(s(X)) -> s(s(a__g(mark(X)))) 3.14/1.58 a__sel(0, cons(X, Y)) -> mark(X) 3.14/1.58 a__sel(s(X), cons(Y, Z)) -> a__sel(mark(X), mark(Z)) 3.14/1.58 mark(f(X)) -> a__f(mark(X)) 3.14/1.58 mark(g(X)) -> a__g(mark(X)) 3.14/1.58 mark(sel(X1, X2)) -> a__sel(mark(X1), mark(X2)) 3.14/1.58 mark(cons(X1, X2)) -> cons(mark(X1), X2) 3.14/1.58 mark(0) -> 0 3.14/1.58 mark(s(X)) -> s(mark(X)) 3.14/1.58 a__f(X) -> f(X) 3.14/1.58 a__g(X) -> g(X) 3.14/1.58 a__sel(X1, X2) -> sel(X1, X2) 3.14/1.58 3.14/1.58 S is empty. 3.14/1.58 Rewrite Strategy: FULL 3.14/1.58 ---------------------------------------- 3.14/1.58 3.14/1.58 (6) LowerBoundPropagationProof (FINISHED) 3.14/1.58 Propagated lower bound. 3.14/1.58 ---------------------------------------- 3.14/1.58 3.14/1.58 (7) 3.14/1.58 BOUNDS(n^1, INF) 3.14/1.58 3.14/1.58 ---------------------------------------- 3.14/1.58 3.14/1.58 (8) 3.14/1.58 Obligation: 3.14/1.58 Analyzing the following TRS for decreasing loops: 3.14/1.58 3.14/1.58 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.14/1.58 3.14/1.58 3.14/1.58 The TRS R consists of the following rules: 3.14/1.58 3.14/1.58 a__f(X) -> cons(mark(X), f(g(X))) 3.14/1.58 a__g(0) -> s(0) 3.14/1.58 a__g(s(X)) -> s(s(a__g(mark(X)))) 3.14/1.58 a__sel(0, cons(X, Y)) -> mark(X) 3.14/1.58 a__sel(s(X), cons(Y, Z)) -> a__sel(mark(X), mark(Z)) 3.14/1.58 mark(f(X)) -> a__f(mark(X)) 3.14/1.58 mark(g(X)) -> a__g(mark(X)) 3.14/1.58 mark(sel(X1, X2)) -> a__sel(mark(X1), mark(X2)) 3.14/1.58 mark(cons(X1, X2)) -> cons(mark(X1), X2) 3.14/1.58 mark(0) -> 0 3.14/1.58 mark(s(X)) -> s(mark(X)) 3.14/1.58 a__f(X) -> f(X) 3.14/1.58 a__g(X) -> g(X) 3.14/1.58 a__sel(X1, X2) -> sel(X1, X2) 3.14/1.58 3.14/1.58 S is empty. 3.14/1.58 Rewrite Strategy: FULL 3.14/1.58 ---------------------------------------- 3.14/1.58 3.14/1.58 (9) DecreasingLoopProof (FINISHED) 3.14/1.58 The following loop(s) give(s) rise to the lower bound EXP: 3.14/1.58 3.14/1.58 The rewrite sequence 3.14/1.58 3.14/1.58 mark(f(X)) ->^+ cons(mark(mark(X)), f(g(mark(X)))) 3.14/1.58 3.14/1.58 gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0]. 3.14/1.58 3.14/1.58 The pumping substitution is [X / f(X)]. 3.14/1.58 3.14/1.58 The result substitution is [ ]. 3.14/1.58 3.14/1.58 3.14/1.58 3.14/1.58 The rewrite sequence 3.14/1.58 3.14/1.58 mark(f(X)) ->^+ cons(mark(mark(X)), f(g(mark(X)))) 3.14/1.58 3.14/1.58 gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0,0]. 3.14/1.58 3.14/1.58 The pumping substitution is [X / f(X)]. 3.14/1.58 3.14/1.58 The result substitution is [ ]. 3.14/1.58 3.14/1.58 3.14/1.58 3.14/1.58 3.14/1.58 ---------------------------------------- 3.14/1.58 3.14/1.58 (10) 3.14/1.58 BOUNDS(EXP, INF) 3.14/1.61 EOF