23.31/6.84 WORST_CASE(Omega(n^1), O(n^1)) 23.31/6.85 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 23.31/6.85 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 23.31/6.85 23.31/6.85 23.31/6.85 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 23.31/6.85 23.31/6.85 (0) CpxTRS 23.31/6.85 (1) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] 23.31/6.85 (2) CpxTRS 23.31/6.85 (3) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] 23.31/6.85 (4) CdtProblem 23.31/6.85 (5) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] 23.31/6.85 (6) CdtProblem 23.31/6.85 (7) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] 23.31/6.85 (8) CdtProblem 23.31/6.85 (9) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] 23.31/6.85 (10) CdtProblem 23.31/6.85 (11) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 15 ms] 23.31/6.85 (12) CdtProblem 23.31/6.85 (13) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] 23.31/6.85 (14) BOUNDS(1, 1) 23.31/6.85 (15) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 23.31/6.85 (16) TRS for Loop Detection 23.31/6.85 (17) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 23.31/6.85 (18) BEST 23.31/6.85 (19) proven lower bound 23.31/6.85 (20) LowerBoundPropagationProof [FINISHED, 0 ms] 23.31/6.85 (21) BOUNDS(n^1, INF) 23.31/6.85 (22) TRS for Loop Detection 23.31/6.85 23.31/6.85 23.31/6.85 ---------------------------------------- 23.31/6.85 23.31/6.85 (0) 23.31/6.85 Obligation: 23.31/6.85 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 23.31/6.85 23.31/6.85 23.31/6.85 The TRS R consists of the following rules: 23.31/6.85 23.31/6.85 prime(0) -> false 23.31/6.85 prime(s(0)) -> false 23.31/6.85 prime(s(s(x))) -> prime1(s(s(x)), s(x)) 23.31/6.85 prime1(x, 0) -> false 23.31/6.85 prime1(x, s(0)) -> true 23.31/6.85 prime1(x, s(s(y))) -> and(not(divp(s(s(y)), x)), prime1(x, s(y))) 23.31/6.85 divp(x, y) -> =(rem(x, y), 0) 23.31/6.85 23.31/6.85 S is empty. 23.31/6.85 Rewrite Strategy: FULL 23.31/6.85 ---------------------------------------- 23.31/6.85 23.31/6.85 (1) RcToIrcProof (BOTH BOUNDS(ID, ID)) 23.31/6.85 Converted rc-obligation to irc-obligation. 23.31/6.85 23.31/6.85 As the TRS does not nest defined symbols, we have rc = irc. 23.31/6.85 ---------------------------------------- 23.31/6.85 23.31/6.85 (2) 23.31/6.85 Obligation: 23.31/6.85 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). 23.31/6.85 23.31/6.85 23.31/6.85 The TRS R consists of the following rules: 23.31/6.85 23.31/6.85 prime(0) -> false 23.31/6.85 prime(s(0)) -> false 23.31/6.85 prime(s(s(x))) -> prime1(s(s(x)), s(x)) 23.31/6.85 prime1(x, 0) -> false 23.31/6.85 prime1(x, s(0)) -> true 23.31/6.85 prime1(x, s(s(y))) -> and(not(divp(s(s(y)), x)), prime1(x, s(y))) 23.31/6.85 divp(x, y) -> =(rem(x, y), 0) 23.31/6.85 23.31/6.85 S is empty. 23.31/6.85 Rewrite Strategy: INNERMOST 23.31/6.85 ---------------------------------------- 23.31/6.85 23.31/6.85 (3) CpxTrsToCdtProof (UPPER BOUND(ID)) 23.31/6.85 Converted Cpx (relative) TRS to CDT 23.31/6.85 ---------------------------------------- 23.31/6.85 23.31/6.85 (4) 23.31/6.85 Obligation: 23.31/6.85 Complexity Dependency Tuples Problem 23.31/6.85 23.31/6.85 Rules: 23.31/6.85 prime(0) -> false 23.31/6.85 prime(s(0)) -> false 23.31/6.85 prime(s(s(z0))) -> prime1(s(s(z0)), s(z0)) 23.31/6.85 prime1(z0, 0) -> false 23.31/6.85 prime1(z0, s(0)) -> true 23.31/6.85 prime1(z0, s(s(z1))) -> and(not(divp(s(s(z1)), z0)), prime1(z0, s(z1))) 23.31/6.85 divp(z0, z1) -> =(rem(z0, z1), 0) 23.31/6.85 Tuples: 23.31/6.85 PRIME(0) -> c 23.31/6.85 PRIME(s(0)) -> c1 23.31/6.85 PRIME(s(s(z0))) -> c2(PRIME1(s(s(z0)), s(z0))) 23.31/6.85 PRIME1(z0, 0) -> c3 23.31/6.85 PRIME1(z0, s(0)) -> c4 23.31/6.85 PRIME1(z0, s(s(z1))) -> c5(DIVP(s(s(z1)), z0), PRIME1(z0, s(z1))) 23.31/6.85 DIVP(z0, z1) -> c6 23.31/6.85 S tuples: 23.31/6.85 PRIME(0) -> c 23.31/6.85 PRIME(s(0)) -> c1 23.31/6.85 PRIME(s(s(z0))) -> c2(PRIME1(s(s(z0)), s(z0))) 23.31/6.85 PRIME1(z0, 0) -> c3 23.31/6.85 PRIME1(z0, s(0)) -> c4 23.31/6.85 PRIME1(z0, s(s(z1))) -> c5(DIVP(s(s(z1)), z0), PRIME1(z0, s(z1))) 23.31/6.85 DIVP(z0, z1) -> c6 23.31/6.85 K tuples:none 23.31/6.85 Defined Rule Symbols: prime_1, prime1_2, divp_2 23.31/6.85 23.31/6.85 Defined Pair Symbols: PRIME_1, PRIME1_2, DIVP_2 23.31/6.85 23.31/6.85 Compound Symbols: c, c1, c2_1, c3, c4, c5_2, c6 23.31/6.85 23.31/6.85 23.31/6.85 ---------------------------------------- 23.31/6.85 23.31/6.85 (5) CdtLeafRemovalProof (ComplexityIfPolyImplication) 23.31/6.85 Removed 1 leading nodes: 23.31/6.85 PRIME(s(s(z0))) -> c2(PRIME1(s(s(z0)), s(z0))) 23.31/6.85 Removed 5 trailing nodes: 23.31/6.85 DIVP(z0, z1) -> c6 23.31/6.85 PRIME(s(0)) -> c1 23.31/6.85 PRIME1(z0, s(0)) -> c4 23.31/6.85 PRIME(0) -> c 23.31/6.85 PRIME1(z0, 0) -> c3 23.31/6.85 23.31/6.85 ---------------------------------------- 23.31/6.85 23.31/6.85 (6) 23.31/6.85 Obligation: 23.31/6.85 Complexity Dependency Tuples Problem 23.31/6.85 23.31/6.85 Rules: 23.31/6.85 prime(0) -> false 23.31/6.85 prime(s(0)) -> false 23.31/6.85 prime(s(s(z0))) -> prime1(s(s(z0)), s(z0)) 23.31/6.85 prime1(z0, 0) -> false 23.31/6.85 prime1(z0, s(0)) -> true 23.31/6.85 prime1(z0, s(s(z1))) -> and(not(divp(s(s(z1)), z0)), prime1(z0, s(z1))) 23.31/6.85 divp(z0, z1) -> =(rem(z0, z1), 0) 23.31/6.85 Tuples: 23.31/6.85 PRIME1(z0, s(s(z1))) -> c5(DIVP(s(s(z1)), z0), PRIME1(z0, s(z1))) 23.31/6.85 S tuples: 23.31/6.85 PRIME1(z0, s(s(z1))) -> c5(DIVP(s(s(z1)), z0), PRIME1(z0, s(z1))) 23.31/6.85 K tuples:none 23.31/6.85 Defined Rule Symbols: prime_1, prime1_2, divp_2 23.31/6.85 23.31/6.85 Defined Pair Symbols: PRIME1_2 23.31/6.85 23.31/6.85 Compound Symbols: c5_2 23.31/6.85 23.31/6.85 23.31/6.85 ---------------------------------------- 23.31/6.85 23.31/6.85 (7) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) 23.31/6.85 Removed 1 trailing tuple parts 23.31/6.85 ---------------------------------------- 23.31/6.85 23.31/6.85 (8) 23.31/6.85 Obligation: 23.31/6.85 Complexity Dependency Tuples Problem 23.31/6.85 23.31/6.85 Rules: 23.31/6.85 prime(0) -> false 23.31/6.85 prime(s(0)) -> false 23.31/6.85 prime(s(s(z0))) -> prime1(s(s(z0)), s(z0)) 23.31/6.85 prime1(z0, 0) -> false 23.31/6.85 prime1(z0, s(0)) -> true 23.31/6.85 prime1(z0, s(s(z1))) -> and(not(divp(s(s(z1)), z0)), prime1(z0, s(z1))) 23.31/6.85 divp(z0, z1) -> =(rem(z0, z1), 0) 23.31/6.85 Tuples: 23.31/6.85 PRIME1(z0, s(s(z1))) -> c5(PRIME1(z0, s(z1))) 23.31/6.85 S tuples: 23.31/6.85 PRIME1(z0, s(s(z1))) -> c5(PRIME1(z0, s(z1))) 23.31/6.85 K tuples:none 23.31/6.85 Defined Rule Symbols: prime_1, prime1_2, divp_2 23.31/6.85 23.31/6.85 Defined Pair Symbols: PRIME1_2 23.31/6.85 23.31/6.85 Compound Symbols: c5_1 23.31/6.85 23.31/6.85 23.31/6.85 ---------------------------------------- 23.31/6.85 23.31/6.85 (9) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) 23.31/6.85 The following rules are not usable and were removed: 23.31/6.85 prime(0) -> false 23.31/6.85 prime(s(0)) -> false 23.31/6.85 prime(s(s(z0))) -> prime1(s(s(z0)), s(z0)) 23.31/6.85 prime1(z0, 0) -> false 23.31/6.85 prime1(z0, s(0)) -> true 23.31/6.85 prime1(z0, s(s(z1))) -> and(not(divp(s(s(z1)), z0)), prime1(z0, s(z1))) 23.31/6.85 divp(z0, z1) -> =(rem(z0, z1), 0) 23.31/6.85 23.31/6.85 ---------------------------------------- 23.31/6.85 23.31/6.85 (10) 23.31/6.85 Obligation: 23.31/6.85 Complexity Dependency Tuples Problem 23.31/6.85 23.31/6.85 Rules:none 23.31/6.85 Tuples: 23.31/6.85 PRIME1(z0, s(s(z1))) -> c5(PRIME1(z0, s(z1))) 23.31/6.85 S tuples: 23.31/6.85 PRIME1(z0, s(s(z1))) -> c5(PRIME1(z0, s(z1))) 23.31/6.85 K tuples:none 23.31/6.85 Defined Rule Symbols:none 23.31/6.85 23.31/6.85 Defined Pair Symbols: PRIME1_2 23.31/6.85 23.31/6.85 Compound Symbols: c5_1 23.31/6.85 23.31/6.85 23.31/6.85 ---------------------------------------- 23.31/6.85 23.31/6.85 (11) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) 23.31/6.85 Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. 23.31/6.85 PRIME1(z0, s(s(z1))) -> c5(PRIME1(z0, s(z1))) 23.31/6.85 We considered the (Usable) Rules:none 23.31/6.85 And the Tuples: 23.31/6.85 PRIME1(z0, s(s(z1))) -> c5(PRIME1(z0, s(z1))) 23.31/6.85 The order we found is given by the following interpretation: 23.31/6.85 23.31/6.85 Polynomial interpretation : 23.31/6.85 23.31/6.85 POL(PRIME1(x_1, x_2)) = x_2 23.31/6.85 POL(c5(x_1)) = x_1 23.31/6.85 POL(s(x_1)) = [1] + x_1 23.31/6.85 23.31/6.85 ---------------------------------------- 23.31/6.85 23.31/6.85 (12) 23.31/6.85 Obligation: 23.31/6.85 Complexity Dependency Tuples Problem 23.31/6.85 23.31/6.85 Rules:none 23.31/6.85 Tuples: 23.31/6.85 PRIME1(z0, s(s(z1))) -> c5(PRIME1(z0, s(z1))) 23.31/6.85 S tuples:none 23.31/6.85 K tuples: 23.31/6.85 PRIME1(z0, s(s(z1))) -> c5(PRIME1(z0, s(z1))) 23.31/6.85 Defined Rule Symbols:none 23.31/6.85 23.31/6.85 Defined Pair Symbols: PRIME1_2 23.31/6.85 23.31/6.85 Compound Symbols: c5_1 23.31/6.85 23.31/6.85 23.31/6.85 ---------------------------------------- 23.31/6.85 23.31/6.85 (13) SIsEmptyProof (BOTH BOUNDS(ID, ID)) 23.31/6.85 The set S is empty 23.31/6.85 ---------------------------------------- 23.31/6.85 23.31/6.85 (14) 23.31/6.85 BOUNDS(1, 1) 23.31/6.85 23.31/6.85 ---------------------------------------- 23.31/6.85 23.31/6.85 (15) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 23.31/6.85 Transformed a relative TRS into a decreasing-loop problem. 23.31/6.85 ---------------------------------------- 23.31/6.85 23.31/6.85 (16) 23.31/6.85 Obligation: 23.31/6.85 Analyzing the following TRS for decreasing loops: 23.31/6.85 23.31/6.85 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 23.31/6.85 23.31/6.85 23.31/6.85 The TRS R consists of the following rules: 23.31/6.85 23.31/6.85 prime(0) -> false 23.31/6.85 prime(s(0)) -> false 23.31/6.85 prime(s(s(x))) -> prime1(s(s(x)), s(x)) 23.31/6.85 prime1(x, 0) -> false 23.31/6.85 prime1(x, s(0)) -> true 23.31/6.85 prime1(x, s(s(y))) -> and(not(divp(s(s(y)), x)), prime1(x, s(y))) 23.31/6.85 divp(x, y) -> =(rem(x, y), 0) 23.31/6.85 23.31/6.85 S is empty. 23.31/6.85 Rewrite Strategy: FULL 23.31/6.85 ---------------------------------------- 23.31/6.85 23.31/6.85 (17) DecreasingLoopProof (LOWER BOUND(ID)) 23.31/6.85 The following loop(s) give(s) rise to the lower bound Omega(n^1): 23.31/6.85 23.31/6.85 The rewrite sequence 23.31/6.85 23.31/6.85 prime1(x, s(s(y))) ->^+ and(not(divp(s(s(y)), x)), prime1(x, s(y))) 23.31/6.85 23.31/6.85 gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. 23.31/6.85 23.31/6.85 The pumping substitution is [y / s(y)]. 23.31/6.85 23.31/6.85 The result substitution is [ ]. 23.31/6.85 23.31/6.85 23.31/6.85 23.31/6.85 23.31/6.85 ---------------------------------------- 23.31/6.85 23.31/6.85 (18) 23.31/6.85 Complex Obligation (BEST) 23.31/6.85 23.31/6.85 ---------------------------------------- 23.31/6.85 23.31/6.85 (19) 23.31/6.85 Obligation: 23.31/6.85 Proved the lower bound n^1 for the following obligation: 23.31/6.85 23.31/6.85 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 23.31/6.85 23.31/6.85 23.31/6.85 The TRS R consists of the following rules: 23.31/6.85 23.31/6.85 prime(0) -> false 23.31/6.85 prime(s(0)) -> false 23.31/6.85 prime(s(s(x))) -> prime1(s(s(x)), s(x)) 23.31/6.85 prime1(x, 0) -> false 23.31/6.85 prime1(x, s(0)) -> true 23.31/6.85 prime1(x, s(s(y))) -> and(not(divp(s(s(y)), x)), prime1(x, s(y))) 23.31/6.85 divp(x, y) -> =(rem(x, y), 0) 23.31/6.85 23.31/6.85 S is empty. 23.31/6.85 Rewrite Strategy: FULL 23.31/6.85 ---------------------------------------- 23.31/6.85 23.31/6.85 (20) LowerBoundPropagationProof (FINISHED) 23.31/6.85 Propagated lower bound. 23.31/6.85 ---------------------------------------- 23.31/6.85 23.31/6.85 (21) 23.31/6.85 BOUNDS(n^1, INF) 23.31/6.85 23.31/6.85 ---------------------------------------- 23.31/6.85 23.31/6.85 (22) 23.31/6.85 Obligation: 23.31/6.85 Analyzing the following TRS for decreasing loops: 23.31/6.85 23.31/6.85 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 23.31/6.85 23.31/6.85 23.31/6.85 The TRS R consists of the following rules: 23.31/6.85 23.31/6.85 prime(0) -> false 23.31/6.85 prime(s(0)) -> false 23.31/6.85 prime(s(s(x))) -> prime1(s(s(x)), s(x)) 23.31/6.85 prime1(x, 0) -> false 23.31/6.85 prime1(x, s(0)) -> true 23.31/6.85 prime1(x, s(s(y))) -> and(not(divp(s(s(y)), x)), prime1(x, s(y))) 23.31/6.85 divp(x, y) -> =(rem(x, y), 0) 23.31/6.85 23.31/6.85 S is empty. 23.31/6.85 Rewrite Strategy: FULL 23.53/6.93 EOF