980.63/291.46 WORST_CASE(Omega(n^1), ?) 980.63/291.47 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 980.63/291.47 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 980.63/291.47 980.63/291.47 980.63/291.47 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 980.63/291.47 980.63/291.47 (0) CpxTRS 980.63/291.47 (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] 980.63/291.47 (2) CpxTRS 980.63/291.47 (3) SlicingProof [LOWER BOUND(ID), 0 ms] 980.63/291.47 (4) CpxTRS 980.63/291.47 (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 980.63/291.47 (6) typed CpxTrs 980.63/291.47 (7) OrderProof [LOWER BOUND(ID), 0 ms] 980.63/291.47 (8) typed CpxTrs 980.63/291.47 (9) RewriteLemmaProof [LOWER BOUND(ID), 288 ms] 980.63/291.47 (10) BEST 980.63/291.47 (11) proven lower bound 980.63/291.47 (12) LowerBoundPropagationProof [FINISHED, 0 ms] 980.63/291.47 (13) BOUNDS(n^1, INF) 980.63/291.47 (14) typed CpxTrs 980.63/291.47 (15) RewriteLemmaProof [LOWER BOUND(ID), 86 ms] 980.63/291.47 (16) BOUNDS(1, INF) 980.63/291.47 980.63/291.47 980.63/291.47 ---------------------------------------- 980.63/291.47 980.63/291.47 (0) 980.63/291.47 Obligation: 980.63/291.47 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 980.63/291.47 980.63/291.47 980.63/291.47 The TRS R consists of the following rules: 980.63/291.47 980.63/291.47 int(0, 0) -> .(0, nil) 980.63/291.47 int(0, s(y)) -> .(0, int(s(0), s(y))) 980.63/291.47 int(s(x), 0) -> nil 980.63/291.47 int(s(x), s(y)) -> int_list(int(x, y)) 980.63/291.47 int_list(nil) -> nil 980.63/291.47 int_list(.(x, y)) -> .(s(x), int_list(y)) 980.63/291.47 980.63/291.47 S is empty. 980.63/291.47 Rewrite Strategy: FULL 980.63/291.47 ---------------------------------------- 980.63/291.47 980.63/291.47 (1) RenamingProof (BOTH BOUNDS(ID, ID)) 980.63/291.47 Renamed function symbols to avoid clashes with predefined symbol. 980.63/291.47 ---------------------------------------- 980.63/291.47 980.63/291.47 (2) 980.63/291.47 Obligation: 980.63/291.47 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 980.63/291.47 980.63/291.47 980.63/291.47 The TRS R consists of the following rules: 980.63/291.47 980.63/291.47 int(0', 0') -> .(0', nil) 980.63/291.47 int(0', s(y)) -> .(0', int(s(0'), s(y))) 980.63/291.47 int(s(x), 0') -> nil 980.63/291.47 int(s(x), s(y)) -> int_list(int(x, y)) 980.63/291.47 int_list(nil) -> nil 980.63/291.47 int_list(.(x, y)) -> .(s(x), int_list(y)) 980.63/291.47 980.63/291.47 S is empty. 980.63/291.47 Rewrite Strategy: FULL 980.63/291.47 ---------------------------------------- 980.63/291.47 980.63/291.47 (3) SlicingProof (LOWER BOUND(ID)) 980.63/291.47 Sliced the following arguments: 980.63/291.47 ./0 980.63/291.47 980.63/291.47 ---------------------------------------- 980.63/291.47 980.63/291.47 (4) 980.63/291.47 Obligation: 980.63/291.47 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 980.63/291.47 980.63/291.47 980.63/291.47 The TRS R consists of the following rules: 980.63/291.47 980.63/291.47 int(0', 0') -> .(nil) 980.63/291.47 int(0', s(y)) -> .(int(s(0'), s(y))) 980.63/291.47 int(s(x), 0') -> nil 980.63/291.47 int(s(x), s(y)) -> int_list(int(x, y)) 980.63/291.47 int_list(nil) -> nil 980.63/291.47 int_list(.(y)) -> .(int_list(y)) 980.63/291.47 980.63/291.47 S is empty. 980.63/291.47 Rewrite Strategy: FULL 980.63/291.47 ---------------------------------------- 980.63/291.47 980.63/291.47 (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 980.63/291.47 Infered types. 980.63/291.47 ---------------------------------------- 980.63/291.47 980.63/291.47 (6) 980.63/291.47 Obligation: 980.63/291.47 TRS: 980.63/291.47 Rules: 980.63/291.47 int(0', 0') -> .(nil) 980.63/291.47 int(0', s(y)) -> .(int(s(0'), s(y))) 980.63/291.47 int(s(x), 0') -> nil 980.63/291.47 int(s(x), s(y)) -> int_list(int(x, y)) 980.63/291.47 int_list(nil) -> nil 980.63/291.47 int_list(.(y)) -> .(int_list(y)) 980.63/291.47 980.63/291.47 Types: 980.63/291.47 int :: 0':s -> 0':s -> nil:. 980.63/291.47 0' :: 0':s 980.63/291.47 . :: nil:. -> nil:. 980.63/291.47 nil :: nil:. 980.63/291.47 s :: 0':s -> 0':s 980.63/291.47 int_list :: nil:. -> nil:. 980.63/291.47 hole_nil:.1_0 :: nil:. 980.63/291.47 hole_0':s2_0 :: 0':s 980.63/291.47 gen_nil:.3_0 :: Nat -> nil:. 980.63/291.47 gen_0':s4_0 :: Nat -> 0':s 980.63/291.47 980.63/291.47 ---------------------------------------- 980.63/291.47 980.63/291.47 (7) OrderProof (LOWER BOUND(ID)) 980.63/291.47 Heuristically decided to analyse the following defined symbols: 980.63/291.47 int, int_list 980.63/291.47 980.63/291.47 They will be analysed ascendingly in the following order: 980.63/291.47 int_list < int 980.63/291.47 980.63/291.47 ---------------------------------------- 980.63/291.47 980.63/291.47 (8) 980.63/291.47 Obligation: 980.63/291.47 TRS: 980.63/291.47 Rules: 980.63/291.47 int(0', 0') -> .(nil) 980.63/291.47 int(0', s(y)) -> .(int(s(0'), s(y))) 980.63/291.47 int(s(x), 0') -> nil 980.63/291.47 int(s(x), s(y)) -> int_list(int(x, y)) 980.63/291.47 int_list(nil) -> nil 980.63/291.47 int_list(.(y)) -> .(int_list(y)) 980.63/291.47 980.63/291.47 Types: 980.63/291.47 int :: 0':s -> 0':s -> nil:. 980.63/291.47 0' :: 0':s 980.63/291.47 . :: nil:. -> nil:. 980.63/291.47 nil :: nil:. 980.63/291.47 s :: 0':s -> 0':s 980.63/291.47 int_list :: nil:. -> nil:. 980.63/291.47 hole_nil:.1_0 :: nil:. 980.63/291.47 hole_0':s2_0 :: 0':s 980.63/291.47 gen_nil:.3_0 :: Nat -> nil:. 980.63/291.47 gen_0':s4_0 :: Nat -> 0':s 980.63/291.47 980.63/291.47 980.63/291.47 Generator Equations: 980.63/291.47 gen_nil:.3_0(0) <=> nil 980.63/291.47 gen_nil:.3_0(+(x, 1)) <=> .(gen_nil:.3_0(x)) 980.63/291.47 gen_0':s4_0(0) <=> 0' 980.63/291.47 gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) 980.63/291.47 980.63/291.47 980.63/291.47 The following defined symbols remain to be analysed: 980.63/291.47 int_list, int 980.63/291.47 980.63/291.47 They will be analysed ascendingly in the following order: 980.63/291.47 int_list < int 980.63/291.47 980.63/291.47 ---------------------------------------- 980.63/291.47 980.63/291.47 (9) RewriteLemmaProof (LOWER BOUND(ID)) 980.63/291.47 Proved the following rewrite lemma: 980.63/291.47 int_list(gen_nil:.3_0(n6_0)) -> gen_nil:.3_0(n6_0), rt in Omega(1 + n6_0) 980.63/291.47 980.63/291.47 Induction Base: 980.63/291.47 int_list(gen_nil:.3_0(0)) ->_R^Omega(1) 980.63/291.47 nil 980.63/291.47 980.63/291.47 Induction Step: 980.63/291.47 int_list(gen_nil:.3_0(+(n6_0, 1))) ->_R^Omega(1) 980.63/291.47 .(int_list(gen_nil:.3_0(n6_0))) ->_IH 980.63/291.47 .(gen_nil:.3_0(c7_0)) 980.63/291.47 980.63/291.47 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 980.63/291.47 ---------------------------------------- 980.63/291.47 980.63/291.47 (10) 980.63/291.47 Complex Obligation (BEST) 980.63/291.47 980.63/291.47 ---------------------------------------- 980.63/291.47 980.63/291.47 (11) 980.63/291.47 Obligation: 980.63/291.47 Proved the lower bound n^1 for the following obligation: 980.63/291.47 980.63/291.47 TRS: 980.63/291.47 Rules: 980.63/291.47 int(0', 0') -> .(nil) 980.63/291.47 int(0', s(y)) -> .(int(s(0'), s(y))) 980.63/291.47 int(s(x), 0') -> nil 980.63/291.47 int(s(x), s(y)) -> int_list(int(x, y)) 980.63/291.47 int_list(nil) -> nil 980.63/291.47 int_list(.(y)) -> .(int_list(y)) 980.63/291.47 980.63/291.47 Types: 980.63/291.47 int :: 0':s -> 0':s -> nil:. 980.63/291.47 0' :: 0':s 980.63/291.47 . :: nil:. -> nil:. 980.63/291.47 nil :: nil:. 980.63/291.47 s :: 0':s -> 0':s 980.63/291.47 int_list :: nil:. -> nil:. 980.63/291.47 hole_nil:.1_0 :: nil:. 980.63/291.47 hole_0':s2_0 :: 0':s 980.63/291.47 gen_nil:.3_0 :: Nat -> nil:. 980.63/291.47 gen_0':s4_0 :: Nat -> 0':s 980.63/291.47 980.63/291.47 980.63/291.47 Generator Equations: 980.63/291.47 gen_nil:.3_0(0) <=> nil 980.63/291.47 gen_nil:.3_0(+(x, 1)) <=> .(gen_nil:.3_0(x)) 980.63/291.47 gen_0':s4_0(0) <=> 0' 980.63/291.47 gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) 980.63/291.47 980.63/291.47 980.63/291.47 The following defined symbols remain to be analysed: 980.63/291.47 int_list, int 980.63/291.47 980.63/291.47 They will be analysed ascendingly in the following order: 980.63/291.47 int_list < int 980.63/291.47 980.63/291.47 ---------------------------------------- 980.63/291.47 980.63/291.47 (12) LowerBoundPropagationProof (FINISHED) 980.63/291.47 Propagated lower bound. 980.63/291.47 ---------------------------------------- 980.63/291.47 980.63/291.47 (13) 980.63/291.47 BOUNDS(n^1, INF) 980.63/291.47 980.63/291.47 ---------------------------------------- 980.63/291.47 980.63/291.47 (14) 980.63/291.47 Obligation: 980.63/291.47 TRS: 980.63/291.47 Rules: 980.63/291.47 int(0', 0') -> .(nil) 980.63/291.47 int(0', s(y)) -> .(int(s(0'), s(y))) 980.63/291.47 int(s(x), 0') -> nil 980.63/291.47 int(s(x), s(y)) -> int_list(int(x, y)) 980.63/291.47 int_list(nil) -> nil 980.63/291.47 int_list(.(y)) -> .(int_list(y)) 980.63/291.47 980.63/291.47 Types: 980.63/291.47 int :: 0':s -> 0':s -> nil:. 980.63/291.47 0' :: 0':s 980.63/291.47 . :: nil:. -> nil:. 980.63/291.47 nil :: nil:. 980.63/291.47 s :: 0':s -> 0':s 980.63/291.47 int_list :: nil:. -> nil:. 980.63/291.47 hole_nil:.1_0 :: nil:. 980.63/291.47 hole_0':s2_0 :: 0':s 980.63/291.47 gen_nil:.3_0 :: Nat -> nil:. 980.63/291.47 gen_0':s4_0 :: Nat -> 0':s 980.63/291.47 980.63/291.47 980.63/291.47 Lemmas: 980.63/291.47 int_list(gen_nil:.3_0(n6_0)) -> gen_nil:.3_0(n6_0), rt in Omega(1 + n6_0) 980.63/291.47 980.63/291.47 980.63/291.47 Generator Equations: 980.63/291.47 gen_nil:.3_0(0) <=> nil 980.63/291.47 gen_nil:.3_0(+(x, 1)) <=> .(gen_nil:.3_0(x)) 980.63/291.47 gen_0':s4_0(0) <=> 0' 980.63/291.47 gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) 980.63/291.47 980.63/291.47 980.63/291.47 The following defined symbols remain to be analysed: 980.63/291.47 int 980.63/291.47 ---------------------------------------- 980.63/291.47 980.63/291.47 (15) RewriteLemmaProof (LOWER BOUND(ID)) 980.63/291.47 Proved the following rewrite lemma: 980.63/291.47 int(gen_0':s4_0(n184_0), gen_0':s4_0(n184_0)) -> gen_nil:.3_0(1), rt in Omega(1 + n184_0) 980.63/291.47 980.63/291.47 Induction Base: 980.63/291.47 int(gen_0':s4_0(0), gen_0':s4_0(0)) ->_R^Omega(1) 980.63/291.47 .(nil) 980.63/291.47 980.63/291.47 Induction Step: 980.63/291.47 int(gen_0':s4_0(+(n184_0, 1)), gen_0':s4_0(+(n184_0, 1))) ->_R^Omega(1) 980.63/291.47 int_list(int(gen_0':s4_0(n184_0), gen_0':s4_0(n184_0))) ->_IH 980.63/291.47 int_list(gen_nil:.3_0(1)) ->_L^Omega(2) 980.63/291.47 gen_nil:.3_0(1) 980.63/291.47 980.63/291.47 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 980.63/291.47 ---------------------------------------- 980.63/291.47 980.63/291.47 (16) 980.63/291.47 BOUNDS(1, INF) 980.79/291.53 EOF