3.47/1.65 WORST_CASE(Omega(n^1), O(n^1)) 3.47/1.66 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.47/1.66 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.47/1.66 3.47/1.66 3.47/1.66 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.47/1.66 3.47/1.66 (0) CpxTRS 3.47/1.66 (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] 3.47/1.66 (2) CpxTRS 3.47/1.66 (3) CpxTrsMatchBoundsTAProof [FINISHED, 42 ms] 3.47/1.66 (4) BOUNDS(1, n^1) 3.47/1.66 (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.47/1.66 (6) TRS for Loop Detection 3.47/1.66 (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.47/1.66 (8) BEST 3.47/1.66 (9) proven lower bound 3.47/1.66 (10) LowerBoundPropagationProof [FINISHED, 0 ms] 3.47/1.66 (11) BOUNDS(n^1, INF) 3.47/1.66 (12) TRS for Loop Detection 3.47/1.66 3.47/1.66 3.47/1.66 ---------------------------------------- 3.47/1.66 3.47/1.66 (0) 3.47/1.66 Obligation: 3.47/1.66 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.47/1.66 3.47/1.66 3.47/1.66 The TRS R consists of the following rules: 3.47/1.66 3.47/1.66 f(0) -> s(0) 3.47/1.66 f(s(0)) -> s(s(0)) 3.47/1.66 f(s(0)) -> *(s(s(0)), f(0)) 3.47/1.66 f(+(x, s(0))) -> +(s(s(0)), f(x)) 3.47/1.66 f(+(x, y)) -> *(f(x), f(y)) 3.47/1.66 3.47/1.66 S is empty. 3.47/1.66 Rewrite Strategy: FULL 3.47/1.66 ---------------------------------------- 3.47/1.66 3.47/1.66 (1) RelTrsToTrsProof (UPPER BOUND(ID)) 3.47/1.66 transformed relative TRS to TRS 3.47/1.66 ---------------------------------------- 3.47/1.66 3.47/1.66 (2) 3.47/1.66 Obligation: 3.47/1.66 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). 3.47/1.66 3.47/1.66 3.47/1.66 The TRS R consists of the following rules: 3.47/1.66 3.47/1.66 f(0) -> s(0) 3.47/1.66 f(s(0)) -> s(s(0)) 3.47/1.66 f(s(0)) -> *(s(s(0)), f(0)) 3.47/1.66 f(+(x, s(0))) -> +(s(s(0)), f(x)) 3.47/1.66 f(+(x, y)) -> *(f(x), f(y)) 3.47/1.66 3.47/1.66 S is empty. 3.47/1.66 Rewrite Strategy: FULL 3.47/1.66 ---------------------------------------- 3.47/1.66 3.47/1.66 (3) CpxTrsMatchBoundsTAProof (FINISHED) 3.47/1.66 A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. 3.47/1.66 3.47/1.66 The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: 3.47/1.66 final states : [1] 3.47/1.66 transitions: 3.47/1.66 00() -> 0 3.47/1.66 s0(0) -> 0 3.47/1.66 *0(0, 0) -> 0 3.47/1.66 +0(0, 0) -> 0 3.47/1.66 f0(0) -> 1 3.47/1.66 01() -> 2 3.47/1.66 s1(2) -> 1 3.47/1.66 s1(2) -> 3 3.47/1.66 s1(3) -> 1 3.47/1.66 s1(3) -> 4 3.47/1.66 01() -> 6 3.47/1.66 f1(6) -> 5 3.47/1.66 *1(4, 5) -> 1 3.47/1.66 s1(3) -> 7 3.47/1.66 f1(0) -> 8 3.47/1.66 +1(7, 8) -> 1 3.47/1.66 f1(0) -> 9 3.47/1.66 f1(0) -> 10 3.47/1.66 *1(9, 10) -> 1 3.47/1.66 s1(2) -> 8 3.47/1.66 s1(2) -> 9 3.47/1.66 s1(2) -> 10 3.47/1.66 02() -> 11 3.47/1.66 s2(11) -> 5 3.47/1.66 s1(3) -> 8 3.47/1.66 s1(3) -> 9 3.47/1.66 s1(3) -> 10 3.47/1.66 *1(4, 5) -> 8 3.47/1.66 *1(4, 5) -> 9 3.47/1.66 *1(4, 5) -> 10 3.47/1.66 +1(7, 8) -> 8 3.47/1.66 +1(7, 8) -> 9 3.47/1.66 +1(7, 8) -> 10 3.47/1.66 *1(9, 10) -> 8 3.47/1.66 *1(9, 10) -> 9 3.47/1.66 *1(9, 10) -> 10 3.47/1.66 3.47/1.66 ---------------------------------------- 3.47/1.66 3.47/1.66 (4) 3.47/1.66 BOUNDS(1, n^1) 3.47/1.66 3.47/1.66 ---------------------------------------- 3.47/1.66 3.47/1.66 (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.47/1.66 Transformed a relative TRS into a decreasing-loop problem. 3.47/1.66 ---------------------------------------- 3.47/1.66 3.47/1.66 (6) 3.47/1.66 Obligation: 3.47/1.66 Analyzing the following TRS for decreasing loops: 3.47/1.66 3.47/1.66 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.47/1.66 3.47/1.66 3.47/1.66 The TRS R consists of the following rules: 3.47/1.66 3.47/1.66 f(0) -> s(0) 3.47/1.66 f(s(0)) -> s(s(0)) 3.47/1.66 f(s(0)) -> *(s(s(0)), f(0)) 3.47/1.66 f(+(x, s(0))) -> +(s(s(0)), f(x)) 3.47/1.66 f(+(x, y)) -> *(f(x), f(y)) 3.47/1.66 3.47/1.66 S is empty. 3.47/1.66 Rewrite Strategy: FULL 3.47/1.66 ---------------------------------------- 3.47/1.66 3.47/1.66 (7) DecreasingLoopProof (LOWER BOUND(ID)) 3.47/1.66 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.47/1.66 3.47/1.66 The rewrite sequence 3.47/1.66 3.47/1.66 f(+(x, y)) ->^+ *(f(x), f(y)) 3.47/1.66 3.47/1.66 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.47/1.66 3.47/1.66 The pumping substitution is [x / +(x, y)]. 3.47/1.66 3.47/1.66 The result substitution is [ ]. 3.47/1.66 3.47/1.66 3.47/1.66 3.47/1.66 3.47/1.66 ---------------------------------------- 3.47/1.66 3.47/1.66 (8) 3.47/1.66 Complex Obligation (BEST) 3.47/1.66 3.47/1.66 ---------------------------------------- 3.47/1.66 3.47/1.66 (9) 3.47/1.66 Obligation: 3.47/1.66 Proved the lower bound n^1 for the following obligation: 3.47/1.66 3.47/1.66 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.47/1.66 3.47/1.66 3.47/1.66 The TRS R consists of the following rules: 3.47/1.66 3.47/1.66 f(0) -> s(0) 3.47/1.66 f(s(0)) -> s(s(0)) 3.47/1.66 f(s(0)) -> *(s(s(0)), f(0)) 3.47/1.66 f(+(x, s(0))) -> +(s(s(0)), f(x)) 3.47/1.66 f(+(x, y)) -> *(f(x), f(y)) 3.47/1.66 3.47/1.66 S is empty. 3.47/1.66 Rewrite Strategy: FULL 3.47/1.66 ---------------------------------------- 3.47/1.66 3.47/1.66 (10) LowerBoundPropagationProof (FINISHED) 3.47/1.66 Propagated lower bound. 3.47/1.66 ---------------------------------------- 3.47/1.66 3.47/1.66 (11) 3.47/1.66 BOUNDS(n^1, INF) 3.47/1.66 3.47/1.66 ---------------------------------------- 3.47/1.66 3.47/1.66 (12) 3.47/1.66 Obligation: 3.47/1.66 Analyzing the following TRS for decreasing loops: 3.47/1.66 3.47/1.66 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.47/1.66 3.47/1.66 3.47/1.66 The TRS R consists of the following rules: 3.47/1.66 3.47/1.66 f(0) -> s(0) 3.47/1.66 f(s(0)) -> s(s(0)) 3.47/1.66 f(s(0)) -> *(s(s(0)), f(0)) 3.47/1.66 f(+(x, s(0))) -> +(s(s(0)), f(x)) 3.47/1.66 f(+(x, y)) -> *(f(x), f(y)) 3.47/1.66 3.47/1.66 S is empty. 3.47/1.66 Rewrite Strategy: FULL 3.47/1.68 EOF