3.21/1.69 WORST_CASE(NON_POLY, ?) 3.41/1.70 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.41/1.70 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.41/1.70 3.41/1.70 3.41/1.70 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.41/1.70 3.41/1.70 (0) CpxTRS 3.41/1.70 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.41/1.70 (2) TRS for Loop Detection 3.41/1.70 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.41/1.70 (4) BEST 3.41/1.70 (5) proven lower bound 3.41/1.70 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 3.41/1.70 (7) BOUNDS(n^1, INF) 3.41/1.70 (8) TRS for Loop Detection 3.41/1.70 (9) DecreasingLoopProof [FINISHED, 18 ms] 3.41/1.70 (10) BOUNDS(EXP, INF) 3.41/1.70 3.41/1.70 3.41/1.70 ---------------------------------------- 3.41/1.70 3.41/1.70 (0) 3.41/1.70 Obligation: 3.41/1.70 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.41/1.70 3.41/1.70 3.41/1.70 The TRS R consists of the following rules: 3.41/1.70 3.41/1.70 app(nil, k) -> k 3.41/1.70 app(l, nil) -> l 3.41/1.70 app(cons(x, l), k) -> cons(x, app(l, k)) 3.41/1.70 sum(cons(x, nil)) -> cons(x, nil) 3.41/1.70 sum(cons(x, cons(y, l))) -> sum(cons(a(x, y, h), l)) 3.41/1.70 a(h, h, x) -> s(x) 3.41/1.70 a(x, s(y), h) -> a(x, y, s(h)) 3.41/1.70 a(x, s(y), s(z)) -> a(x, y, a(x, s(y), z)) 3.41/1.70 a(s(x), h, z) -> a(x, z, z) 3.41/1.70 3.41/1.70 S is empty. 3.41/1.70 Rewrite Strategy: FULL 3.41/1.70 ---------------------------------------- 3.41/1.70 3.41/1.70 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.41/1.70 Transformed a relative TRS into a decreasing-loop problem. 3.41/1.70 ---------------------------------------- 3.41/1.70 3.41/1.70 (2) 3.41/1.70 Obligation: 3.41/1.70 Analyzing the following TRS for decreasing loops: 3.41/1.70 3.41/1.70 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.41/1.70 3.41/1.70 3.41/1.70 The TRS R consists of the following rules: 3.41/1.70 3.41/1.70 app(nil, k) -> k 3.41/1.70 app(l, nil) -> l 3.41/1.70 app(cons(x, l), k) -> cons(x, app(l, k)) 3.41/1.70 sum(cons(x, nil)) -> cons(x, nil) 3.41/1.70 sum(cons(x, cons(y, l))) -> sum(cons(a(x, y, h), l)) 3.41/1.70 a(h, h, x) -> s(x) 3.41/1.70 a(x, s(y), h) -> a(x, y, s(h)) 3.41/1.70 a(x, s(y), s(z)) -> a(x, y, a(x, s(y), z)) 3.41/1.70 a(s(x), h, z) -> a(x, z, z) 3.41/1.70 3.41/1.70 S is empty. 3.41/1.70 Rewrite Strategy: FULL 3.41/1.70 ---------------------------------------- 3.41/1.70 3.41/1.70 (3) DecreasingLoopProof (LOWER BOUND(ID)) 3.41/1.70 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.41/1.70 3.41/1.70 The rewrite sequence 3.41/1.70 3.41/1.70 app(cons(x, l), k) ->^+ cons(x, app(l, k)) 3.41/1.70 3.41/1.70 gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. 3.41/1.70 3.41/1.70 The pumping substitution is [l / cons(x, l)]. 3.41/1.70 3.41/1.70 The result substitution is [ ]. 3.41/1.70 3.41/1.70 3.41/1.70 3.41/1.70 3.41/1.70 ---------------------------------------- 3.41/1.70 3.41/1.70 (4) 3.41/1.70 Complex Obligation (BEST) 3.41/1.70 3.41/1.70 ---------------------------------------- 3.41/1.70 3.41/1.70 (5) 3.41/1.70 Obligation: 3.41/1.70 Proved the lower bound n^1 for the following obligation: 3.41/1.70 3.41/1.70 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.41/1.70 3.41/1.70 3.41/1.70 The TRS R consists of the following rules: 3.41/1.70 3.41/1.70 app(nil, k) -> k 3.41/1.70 app(l, nil) -> l 3.41/1.70 app(cons(x, l), k) -> cons(x, app(l, k)) 3.41/1.70 sum(cons(x, nil)) -> cons(x, nil) 3.41/1.70 sum(cons(x, cons(y, l))) -> sum(cons(a(x, y, h), l)) 3.41/1.70 a(h, h, x) -> s(x) 3.41/1.70 a(x, s(y), h) -> a(x, y, s(h)) 3.41/1.70 a(x, s(y), s(z)) -> a(x, y, a(x, s(y), z)) 3.41/1.70 a(s(x), h, z) -> a(x, z, z) 3.41/1.70 3.41/1.70 S is empty. 3.41/1.70 Rewrite Strategy: FULL 3.41/1.70 ---------------------------------------- 3.41/1.70 3.41/1.70 (6) LowerBoundPropagationProof (FINISHED) 3.41/1.70 Propagated lower bound. 3.41/1.70 ---------------------------------------- 3.41/1.70 3.41/1.70 (7) 3.41/1.70 BOUNDS(n^1, INF) 3.41/1.70 3.41/1.70 ---------------------------------------- 3.41/1.70 3.41/1.70 (8) 3.41/1.70 Obligation: 3.41/1.70 Analyzing the following TRS for decreasing loops: 3.41/1.70 3.41/1.70 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.41/1.70 3.41/1.70 3.41/1.70 The TRS R consists of the following rules: 3.41/1.70 3.41/1.70 app(nil, k) -> k 3.41/1.70 app(l, nil) -> l 3.41/1.70 app(cons(x, l), k) -> cons(x, app(l, k)) 3.41/1.70 sum(cons(x, nil)) -> cons(x, nil) 3.41/1.70 sum(cons(x, cons(y, l))) -> sum(cons(a(x, y, h), l)) 3.41/1.70 a(h, h, x) -> s(x) 3.41/1.70 a(x, s(y), h) -> a(x, y, s(h)) 3.41/1.70 a(x, s(y), s(z)) -> a(x, y, a(x, s(y), z)) 3.41/1.70 a(s(x), h, z) -> a(x, z, z) 3.41/1.70 3.41/1.70 S is empty. 3.41/1.70 Rewrite Strategy: FULL 3.41/1.70 ---------------------------------------- 3.41/1.70 3.41/1.70 (9) DecreasingLoopProof (FINISHED) 3.41/1.70 The following loop(s) give(s) rise to the lower bound EXP: 3.41/1.70 3.41/1.70 The rewrite sequence 3.41/1.70 3.41/1.70 a(s(x1_0), s(h), s(z)) ->^+ a(x1_0, a(s(x1_0), s(h), z), a(s(x1_0), s(h), z)) 3.41/1.70 3.41/1.70 gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. 3.41/1.70 3.41/1.70 The pumping substitution is [z / s(z)]. 3.41/1.70 3.41/1.70 The result substitution is [ ]. 3.41/1.70 3.41/1.70 3.41/1.70 3.41/1.70 The rewrite sequence 3.41/1.70 3.41/1.70 a(s(x1_0), s(h), s(z)) ->^+ a(x1_0, a(s(x1_0), s(h), z), a(s(x1_0), s(h), z)) 3.41/1.70 3.41/1.70 gives rise to a decreasing loop by considering the right hand sides subterm at position [2]. 3.41/1.70 3.41/1.70 The pumping substitution is [z / s(z)]. 3.41/1.70 3.41/1.70 The result substitution is [ ]. 3.41/1.70 3.41/1.70 3.41/1.70 3.41/1.70 3.41/1.70 ---------------------------------------- 3.41/1.70 3.41/1.70 (10) 3.41/1.70 BOUNDS(EXP, INF) 3.41/1.73 EOF