311.30/291.52 WORST_CASE(Omega(n^1), ?) 311.30/291.52 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 311.30/291.52 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 311.30/291.52 311.30/291.52 311.30/291.52 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 311.30/291.52 311.30/291.52 (0) CpxTRS 311.30/291.52 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 311.30/291.52 (2) TRS for Loop Detection 311.30/291.52 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 311.30/291.52 (4) BEST 311.30/291.52 (5) proven lower bound 311.30/291.52 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 311.30/291.52 (7) BOUNDS(n^1, INF) 311.30/291.52 (8) TRS for Loop Detection 311.30/291.52 311.30/291.52 311.30/291.52 ---------------------------------------- 311.30/291.52 311.30/291.52 (0) 311.30/291.52 Obligation: 311.30/291.52 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 311.30/291.52 311.30/291.52 311.30/291.52 The TRS R consists of the following rules: 311.30/291.52 311.30/291.52 times(x, y) -> sum(generate(x, y)) 311.30/291.52 generate(x, y) -> gen(x, y, 0) 311.30/291.52 gen(x, y, z) -> if(ge(z, x), x, y, z) 311.30/291.52 if(true, x, y, z) -> nil 311.30/291.52 if(false, x, y, z) -> cons(y, gen(x, y, s(z))) 311.30/291.52 sum(xs) -> sum2(xs, 0) 311.30/291.52 sum2(xs, y) -> ifsum(isNil(xs), isZero(head(xs)), xs, y) 311.30/291.52 ifsum(true, b, xs, y) -> y 311.30/291.52 ifsum(false, b, xs, y) -> ifsum2(b, xs, y) 311.30/291.52 ifsum2(true, xs, y) -> sum2(tail(xs), y) 311.30/291.52 ifsum2(false, xs, y) -> sum2(cons(p(head(xs)), tail(xs)), s(y)) 311.30/291.52 isNil(nil) -> true 311.30/291.52 isNil(cons(x, xs)) -> false 311.30/291.52 tail(nil) -> nil 311.30/291.52 tail(cons(x, xs)) -> xs 311.30/291.52 head(cons(x, xs)) -> x 311.30/291.52 head(nil) -> error 311.30/291.52 isZero(0) -> true 311.30/291.52 isZero(s(0)) -> false 311.30/291.52 isZero(s(s(x))) -> isZero(s(x)) 311.30/291.52 p(0) -> s(s(0)) 311.30/291.52 p(s(0)) -> 0 311.30/291.52 p(s(s(x))) -> s(p(s(x))) 311.30/291.52 ge(x, 0) -> true 311.30/291.52 ge(0, s(y)) -> false 311.30/291.52 ge(s(x), s(y)) -> ge(x, y) 311.30/291.52 a -> c 311.30/291.52 a -> d 311.30/291.52 311.30/291.52 S is empty. 311.30/291.52 Rewrite Strategy: FULL 311.30/291.52 ---------------------------------------- 311.30/291.52 311.30/291.52 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 311.30/291.52 Transformed a relative TRS into a decreasing-loop problem. 311.30/291.52 ---------------------------------------- 311.30/291.52 311.30/291.52 (2) 311.30/291.52 Obligation: 311.30/291.52 Analyzing the following TRS for decreasing loops: 311.30/291.52 311.30/291.52 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 311.30/291.52 311.30/291.52 311.30/291.52 The TRS R consists of the following rules: 311.30/291.52 311.30/291.52 times(x, y) -> sum(generate(x, y)) 311.30/291.53 generate(x, y) -> gen(x, y, 0) 311.30/291.53 gen(x, y, z) -> if(ge(z, x), x, y, z) 311.30/291.53 if(true, x, y, z) -> nil 311.30/291.53 if(false, x, y, z) -> cons(y, gen(x, y, s(z))) 311.30/291.53 sum(xs) -> sum2(xs, 0) 311.30/291.53 sum2(xs, y) -> ifsum(isNil(xs), isZero(head(xs)), xs, y) 311.30/291.53 ifsum(true, b, xs, y) -> y 311.30/291.53 ifsum(false, b, xs, y) -> ifsum2(b, xs, y) 311.30/291.53 ifsum2(true, xs, y) -> sum2(tail(xs), y) 311.30/291.53 ifsum2(false, xs, y) -> sum2(cons(p(head(xs)), tail(xs)), s(y)) 311.30/291.53 isNil(nil) -> true 311.30/291.53 isNil(cons(x, xs)) -> false 311.30/291.53 tail(nil) -> nil 311.30/291.53 tail(cons(x, xs)) -> xs 311.30/291.53 head(cons(x, xs)) -> x 311.30/291.53 head(nil) -> error 311.30/291.53 isZero(0) -> true 311.30/291.53 isZero(s(0)) -> false 311.30/291.53 isZero(s(s(x))) -> isZero(s(x)) 311.30/291.53 p(0) -> s(s(0)) 311.30/291.53 p(s(0)) -> 0 311.30/291.53 p(s(s(x))) -> s(p(s(x))) 311.30/291.53 ge(x, 0) -> true 311.30/291.53 ge(0, s(y)) -> false 311.30/291.53 ge(s(x), s(y)) -> ge(x, y) 311.30/291.53 a -> c 311.30/291.53 a -> d 311.30/291.53 311.30/291.53 S is empty. 311.30/291.53 Rewrite Strategy: FULL 311.30/291.53 ---------------------------------------- 311.30/291.53 311.30/291.53 (3) DecreasingLoopProof (LOWER BOUND(ID)) 311.30/291.53 The following loop(s) give(s) rise to the lower bound Omega(n^1): 311.30/291.53 311.30/291.53 The rewrite sequence 311.30/291.53 311.30/291.53 p(s(s(x))) ->^+ s(p(s(x))) 311.30/291.53 311.30/291.53 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 311.30/291.53 311.30/291.53 The pumping substitution is [x / s(x)]. 311.30/291.53 311.30/291.53 The result substitution is [ ]. 311.30/291.53 311.30/291.53 311.30/291.53 311.30/291.53 311.30/291.53 ---------------------------------------- 311.30/291.53 311.30/291.53 (4) 311.30/291.53 Complex Obligation (BEST) 311.30/291.53 311.30/291.53 ---------------------------------------- 311.30/291.53 311.30/291.53 (5) 311.30/291.53 Obligation: 311.30/291.53 Proved the lower bound n^1 for the following obligation: 311.30/291.53 311.30/291.53 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 311.30/291.53 311.30/291.53 311.30/291.53 The TRS R consists of the following rules: 311.30/291.53 311.30/291.53 times(x, y) -> sum(generate(x, y)) 311.30/291.53 generate(x, y) -> gen(x, y, 0) 311.30/291.53 gen(x, y, z) -> if(ge(z, x), x, y, z) 311.30/291.53 if(true, x, y, z) -> nil 311.30/291.53 if(false, x, y, z) -> cons(y, gen(x, y, s(z))) 311.30/291.53 sum(xs) -> sum2(xs, 0) 311.30/291.53 sum2(xs, y) -> ifsum(isNil(xs), isZero(head(xs)), xs, y) 311.30/291.53 ifsum(true, b, xs, y) -> y 311.30/291.53 ifsum(false, b, xs, y) -> ifsum2(b, xs, y) 311.30/291.53 ifsum2(true, xs, y) -> sum2(tail(xs), y) 311.30/291.53 ifsum2(false, xs, y) -> sum2(cons(p(head(xs)), tail(xs)), s(y)) 311.30/291.53 isNil(nil) -> true 311.30/291.53 isNil(cons(x, xs)) -> false 311.30/291.53 tail(nil) -> nil 311.30/291.53 tail(cons(x, xs)) -> xs 311.30/291.53 head(cons(x, xs)) -> x 311.30/291.53 head(nil) -> error 311.30/291.53 isZero(0) -> true 311.30/291.53 isZero(s(0)) -> false 311.30/291.53 isZero(s(s(x))) -> isZero(s(x)) 311.30/291.53 p(0) -> s(s(0)) 311.30/291.53 p(s(0)) -> 0 311.30/291.53 p(s(s(x))) -> s(p(s(x))) 311.30/291.53 ge(x, 0) -> true 311.30/291.53 ge(0, s(y)) -> false 311.30/291.53 ge(s(x), s(y)) -> ge(x, y) 311.30/291.53 a -> c 311.30/291.53 a -> d 311.30/291.53 311.30/291.53 S is empty. 311.30/291.53 Rewrite Strategy: FULL 311.30/291.53 ---------------------------------------- 311.30/291.53 311.30/291.53 (6) LowerBoundPropagationProof (FINISHED) 311.30/291.53 Propagated lower bound. 311.30/291.53 ---------------------------------------- 311.30/291.53 311.30/291.53 (7) 311.30/291.53 BOUNDS(n^1, INF) 311.30/291.53 311.30/291.53 ---------------------------------------- 311.30/291.53 311.30/291.53 (8) 311.30/291.53 Obligation: 311.30/291.53 Analyzing the following TRS for decreasing loops: 311.30/291.53 311.30/291.53 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 311.30/291.53 311.30/291.53 311.30/291.53 The TRS R consists of the following rules: 311.30/291.53 311.30/291.53 times(x, y) -> sum(generate(x, y)) 311.30/291.53 generate(x, y) -> gen(x, y, 0) 311.30/291.53 gen(x, y, z) -> if(ge(z, x), x, y, z) 311.30/291.53 if(true, x, y, z) -> nil 311.30/291.53 if(false, x, y, z) -> cons(y, gen(x, y, s(z))) 311.30/291.53 sum(xs) -> sum2(xs, 0) 311.30/291.53 sum2(xs, y) -> ifsum(isNil(xs), isZero(head(xs)), xs, y) 311.30/291.53 ifsum(true, b, xs, y) -> y 311.30/291.53 ifsum(false, b, xs, y) -> ifsum2(b, xs, y) 311.30/291.53 ifsum2(true, xs, y) -> sum2(tail(xs), y) 311.30/291.53 ifsum2(false, xs, y) -> sum2(cons(p(head(xs)), tail(xs)), s(y)) 311.30/291.53 isNil(nil) -> true 311.30/291.53 isNil(cons(x, xs)) -> false 311.30/291.53 tail(nil) -> nil 311.30/291.53 tail(cons(x, xs)) -> xs 311.30/291.53 head(cons(x, xs)) -> x 311.30/291.53 head(nil) -> error 311.30/291.53 isZero(0) -> true 311.30/291.53 isZero(s(0)) -> false 311.30/291.53 isZero(s(s(x))) -> isZero(s(x)) 311.30/291.53 p(0) -> s(s(0)) 311.30/291.53 p(s(0)) -> 0 311.30/291.53 p(s(s(x))) -> s(p(s(x))) 311.30/291.53 ge(x, 0) -> true 311.30/291.53 ge(0, s(y)) -> false 311.30/291.53 ge(s(x), s(y)) -> ge(x, y) 311.30/291.53 a -> c 311.30/291.53 a -> d 311.30/291.53 311.30/291.53 S is empty. 311.30/291.53 Rewrite Strategy: FULL 311.30/291.55 EOF