343.01/291.57 WORST_CASE(Omega(n^1), O(n^2)) 343.11/291.59 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 343.11/291.59 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 343.11/291.59 343.11/291.59 343.11/291.59 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). 343.11/291.59 343.11/291.59 (0) CpxTRS 343.11/291.59 (1) DependencyGraphProof [UPPER BOUND(ID), 0 ms] 343.11/291.59 (2) CpxTRS 343.11/291.59 (3) NestedDefinedSymbolProof [UPPER BOUND(ID), 11 ms] 343.11/291.59 (4) CpxTRS 343.11/291.59 (5) NonCtorToCtorProof [UPPER BOUND(ID), 0 ms] 343.11/291.59 (6) CpxRelTRS 343.11/291.59 (7) RcToIrcProof [BOTH BOUNDS(ID, ID), 8 ms] 343.11/291.59 (8) CpxRelTRS 343.11/291.59 (9) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] 343.11/291.59 (10) CdtProblem 343.11/291.59 (11) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] 343.11/291.59 (12) CdtProblem 343.11/291.59 (13) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] 343.11/291.59 (14) CdtProblem 343.11/291.59 (15) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 201 ms] 343.11/291.59 (16) CdtProblem 343.11/291.59 (17) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 15 ms] 343.11/291.59 (18) CdtProblem 343.11/291.59 (19) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 11 ms] 343.11/291.59 (20) CdtProblem 343.11/291.59 (21) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 69 ms] 343.11/291.59 (22) CdtProblem 343.11/291.59 (23) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] 343.11/291.59 (24) BOUNDS(1, 1) 343.11/291.59 (25) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 343.11/291.59 (26) TRS for Loop Detection 343.11/291.59 (27) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 343.11/291.59 (28) BEST 343.11/291.59 (29) proven lower bound 343.11/291.59 (30) LowerBoundPropagationProof [FINISHED, 0 ms] 343.11/291.59 (31) BOUNDS(n^1, INF) 343.11/291.59 (32) TRS for Loop Detection 343.11/291.59 343.11/291.59 343.11/291.59 ---------------------------------------- 343.11/291.59 343.11/291.59 (0) 343.11/291.59 Obligation: 343.11/291.59 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). 343.11/291.59 343.11/291.59 343.11/291.59 The TRS R consists of the following rules: 343.11/291.59 343.11/291.59 a(h, h, h, x) -> s(x) 343.11/291.59 a(l, x, s(y), h) -> a(l, x, y, s(h)) 343.11/291.59 a(l, x, s(y), s(z)) -> a(l, x, y, a(l, x, s(y), z)) 343.11/291.59 a(l, s(x), h, z) -> a(l, x, z, z) 343.11/291.59 a(s(l), h, h, z) -> a(l, z, h, z) 343.11/291.59 +(x, h) -> x 343.11/291.59 +(h, x) -> x 343.11/291.59 +(s(x), s(y)) -> s(s(+(x, y))) 343.11/291.59 +(+(x, y), z) -> +(x, +(y, z)) 343.11/291.59 s(h) -> 1 343.11/291.59 app(nil, k) -> k 343.11/291.59 app(l, nil) -> l 343.11/291.59 app(cons(x, l), k) -> cons(x, app(l, k)) 343.11/291.59 sum(cons(x, nil)) -> cons(x, nil) 343.11/291.59 sum(cons(x, cons(y, l))) -> sum(cons(a(x, y, h, h), l)) 343.11/291.59 343.11/291.59 S is empty. 343.11/291.59 Rewrite Strategy: FULL 343.11/291.59 ---------------------------------------- 343.11/291.59 343.11/291.59 (1) DependencyGraphProof (UPPER BOUND(ID)) 343.11/291.59 The following rules are not reachable from basic terms in the dependency graph and can be removed: 343.11/291.59 343.11/291.59 +(s(x), s(y)) -> s(s(+(x, y))) 343.11/291.59 +(+(x, y), z) -> +(x, +(y, z)) 343.11/291.59 343.11/291.59 ---------------------------------------- 343.11/291.59 343.11/291.59 (2) 343.11/291.59 Obligation: 343.11/291.59 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^2). 343.11/291.59 343.11/291.59 343.11/291.59 The TRS R consists of the following rules: 343.11/291.59 343.11/291.59 a(h, h, h, x) -> s(x) 343.11/291.59 a(l, x, s(y), h) -> a(l, x, y, s(h)) 343.11/291.59 a(l, x, s(y), s(z)) -> a(l, x, y, a(l, x, s(y), z)) 343.11/291.59 a(l, s(x), h, z) -> a(l, x, z, z) 343.11/291.59 a(s(l), h, h, z) -> a(l, z, h, z) 343.11/291.59 +(x, h) -> x 343.11/291.59 +(h, x) -> x 343.11/291.59 s(h) -> 1 343.11/291.59 app(nil, k) -> k 343.11/291.59 app(l, nil) -> l 343.11/291.59 app(cons(x, l), k) -> cons(x, app(l, k)) 343.11/291.59 sum(cons(x, nil)) -> cons(x, nil) 343.11/291.59 sum(cons(x, cons(y, l))) -> sum(cons(a(x, y, h, h), l)) 343.11/291.59 343.11/291.59 S is empty. 343.11/291.59 Rewrite Strategy: FULL 343.11/291.59 ---------------------------------------- 343.11/291.59 343.11/291.59 (3) NestedDefinedSymbolProof (UPPER BOUND(ID)) 343.11/291.59 The following defined symbols can occur below the 0th argument of sum: s, a 343.11/291.59 The following defined symbols can occur below the 0th argument of a: s, a 343.11/291.59 The following defined symbols can occur below the 1th argument of a: s, a 343.11/291.59 343.11/291.59 Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: 343.11/291.59 a(l, x, s(y), h) -> a(l, x, y, s(h)) 343.11/291.59 a(l, x, s(y), s(z)) -> a(l, x, y, a(l, x, s(y), z)) 343.11/291.59 343.11/291.59 ---------------------------------------- 343.11/291.59 343.11/291.59 (4) 343.11/291.59 Obligation: 343.11/291.59 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^2). 343.11/291.59 343.11/291.59 343.11/291.59 The TRS R consists of the following rules: 343.11/291.59 343.11/291.59 a(h, h, h, x) -> s(x) 343.11/291.59 a(l, s(x), h, z) -> a(l, x, z, z) 343.11/291.59 a(s(l), h, h, z) -> a(l, z, h, z) 343.11/291.59 +(x, h) -> x 343.11/291.59 +(h, x) -> x 343.11/291.59 s(h) -> 1 343.11/291.59 app(nil, k) -> k 343.11/291.59 app(l, nil) -> l 343.11/291.59 app(cons(x, l), k) -> cons(x, app(l, k)) 343.11/291.59 sum(cons(x, nil)) -> cons(x, nil) 343.11/291.59 sum(cons(x, cons(y, l))) -> sum(cons(a(x, y, h, h), l)) 343.11/291.59 343.11/291.59 S is empty. 343.11/291.59 Rewrite Strategy: FULL 343.11/291.59 ---------------------------------------- 343.11/291.59 343.11/291.59 (5) NonCtorToCtorProof (UPPER BOUND(ID)) 343.11/291.59 transformed non-ctor to ctor-system 343.11/291.59 ---------------------------------------- 343.11/291.59 343.11/291.59 (6) 343.11/291.59 Obligation: 343.11/291.59 The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). 343.11/291.59 343.11/291.59 343.11/291.59 The TRS R consists of the following rules: 343.11/291.59 343.11/291.59 a(h, h, h, x) -> s(x) 343.11/291.59 +(x, h) -> x 343.11/291.59 +(h, x) -> x 343.11/291.59 s(h) -> 1 343.11/291.59 app(nil, k) -> k 343.11/291.59 app(l, nil) -> l 343.11/291.59 app(cons(x, l), k) -> cons(x, app(l, k)) 343.11/291.59 sum(cons(x, nil)) -> cons(x, nil) 343.11/291.59 sum(cons(x, cons(y, l))) -> sum(cons(a(x, y, h, h), l)) 343.11/291.59 a(c_s(l), h, h, z) -> a(l, z, h, z) 343.11/291.59 a(l, c_s(x), h, z) -> a(l, x, z, z) 343.11/291.59 343.11/291.59 The (relative) TRS S consists of the following rules: 343.11/291.59 343.11/291.59 s(x0) -> c_s(x0) 343.11/291.59 343.11/291.59 Rewrite Strategy: FULL 343.11/291.59 ---------------------------------------- 343.11/291.59 343.11/291.59 (7) RcToIrcProof (BOTH BOUNDS(ID, ID)) 343.11/291.59 Converted rc-obligation to irc-obligation. 343.11/291.59 343.11/291.59 The duplicating contexts are: 343.11/291.59 a(c_s(l), h, h, []) 343.11/291.59 a(l, c_s(x), h, []) 343.11/291.59 343.11/291.59 343.11/291.59 The defined contexts are: 343.11/291.59 sum(cons([], x1)) 343.11/291.59 a([], x1, h, h) 343.11/291.59 a([], x1, h, x2) 343.11/291.59 a([], x1, x2, x3) 343.11/291.59 343.11/291.59 343.11/291.59 [] just represents basic- or constructor-terms in the following defined contexts: 343.11/291.59 sum(cons([], x1)) 343.11/291.59 343.11/291.59 343.11/291.59 As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc. 343.11/291.59 ---------------------------------------- 343.11/291.59 343.11/291.59 (8) 343.11/291.59 Obligation: 343.11/291.59 The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). 343.11/291.59 343.11/291.59 343.11/291.59 The TRS R consists of the following rules: 343.11/291.59 343.11/291.59 a(h, h, h, x) -> s(x) 343.11/291.59 +(x, h) -> x 343.11/291.59 +(h, x) -> x 343.11/291.59 s(h) -> 1 343.11/291.59 app(nil, k) -> k 343.11/291.59 app(l, nil) -> l 343.11/291.59 app(cons(x, l), k) -> cons(x, app(l, k)) 343.11/291.59 sum(cons(x, nil)) -> cons(x, nil) 343.11/291.59 sum(cons(x, cons(y, l))) -> sum(cons(a(x, y, h, h), l)) 343.11/291.59 a(c_s(l), h, h, z) -> a(l, z, h, z) 343.11/291.59 a(l, c_s(x), h, z) -> a(l, x, z, z) 343.11/291.59 343.11/291.59 The (relative) TRS S consists of the following rules: 343.11/291.59 343.11/291.59 s(x0) -> c_s(x0) 343.11/291.59 343.11/291.59 Rewrite Strategy: INNERMOST 343.11/291.59 ---------------------------------------- 343.11/291.59 343.11/291.59 (9) CpxTrsToCdtProof (UPPER BOUND(ID)) 343.11/291.59 Converted Cpx (relative) TRS to CDT 343.11/291.59 ---------------------------------------- 343.11/291.59 343.11/291.59 (10) 343.11/291.59 Obligation: 343.11/291.59 Complexity Dependency Tuples Problem 343.11/291.59 343.11/291.59 Rules: 343.11/291.59 s(z0) -> c_s(z0) 343.11/291.59 s(h) -> 1 343.11/291.59 a(h, h, h, z0) -> s(z0) 343.11/291.59 a(c_s(z0), h, h, z1) -> a(z0, z1, h, z1) 343.11/291.59 a(z0, c_s(z1), h, z2) -> a(z0, z1, z2, z2) 343.11/291.59 +(z0, h) -> z0 343.11/291.59 +(h, z0) -> z0 343.11/291.59 app(nil, z0) -> z0 343.11/291.59 app(z0, nil) -> z0 343.11/291.59 app(cons(z0, z1), z2) -> cons(z0, app(z1, z2)) 343.11/291.59 sum(cons(z0, nil)) -> cons(z0, nil) 343.11/291.59 sum(cons(z0, cons(z1, z2))) -> sum(cons(a(z0, z1, h, h), z2)) 343.11/291.59 Tuples: 343.11/291.59 S(z0) -> c 343.11/291.59 S(h) -> c1 343.11/291.59 A(h, h, h, z0) -> c2(S(z0)) 343.11/291.59 A(c_s(z0), h, h, z1) -> c3(A(z0, z1, h, z1)) 343.11/291.59 A(z0, c_s(z1), h, z2) -> c4(A(z0, z1, z2, z2)) 343.11/291.59 +'(z0, h) -> c5 343.11/291.59 +'(h, z0) -> c6 343.11/291.59 APP(nil, z0) -> c7 343.11/291.59 APP(z0, nil) -> c8 343.11/291.59 APP(cons(z0, z1), z2) -> c9(APP(z1, z2)) 343.11/291.59 SUM(cons(z0, nil)) -> c10 343.11/291.59 SUM(cons(z0, cons(z1, z2))) -> c11(SUM(cons(a(z0, z1, h, h), z2)), A(z0, z1, h, h)) 343.11/291.59 S tuples: 343.11/291.59 S(h) -> c1 343.11/291.59 A(h, h, h, z0) -> c2(S(z0)) 343.11/291.59 A(c_s(z0), h, h, z1) -> c3(A(z0, z1, h, z1)) 343.11/291.59 A(z0, c_s(z1), h, z2) -> c4(A(z0, z1, z2, z2)) 343.11/291.59 +'(z0, h) -> c5 343.11/291.59 +'(h, z0) -> c6 343.11/291.59 APP(nil, z0) -> c7 343.11/291.59 APP(z0, nil) -> c8 343.11/291.59 APP(cons(z0, z1), z2) -> c9(APP(z1, z2)) 343.11/291.59 SUM(cons(z0, nil)) -> c10 343.11/291.59 SUM(cons(z0, cons(z1, z2))) -> c11(SUM(cons(a(z0, z1, h, h), z2)), A(z0, z1, h, h)) 343.11/291.59 K tuples:none 343.11/291.59 Defined Rule Symbols: a_4, +_2, s_1, app_2, sum_1 343.11/291.59 343.11/291.59 Defined Pair Symbols: S_1, A_4, +'_2, APP_2, SUM_1 343.11/291.59 343.11/291.59 Compound Symbols: c, c1, c2_1, c3_1, c4_1, c5, c6, c7, c8, c9_1, c10, c11_2 343.11/291.59 343.11/291.59 343.11/291.59 ---------------------------------------- 343.11/291.59 343.11/291.59 (11) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) 343.11/291.59 Removed 8 trailing nodes: 343.11/291.59 APP(nil, z0) -> c7 343.11/291.59 +'(h, z0) -> c6 343.11/291.59 S(z0) -> c 343.11/291.59 APP(z0, nil) -> c8 343.11/291.59 A(h, h, h, z0) -> c2(S(z0)) 343.11/291.59 +'(z0, h) -> c5 343.11/291.59 SUM(cons(z0, nil)) -> c10 343.11/291.59 S(h) -> c1 343.11/291.59 343.11/291.59 ---------------------------------------- 343.11/291.59 343.11/291.59 (12) 343.11/291.59 Obligation: 343.11/291.59 Complexity Dependency Tuples Problem 343.11/291.59 343.11/291.59 Rules: 343.11/291.59 s(z0) -> c_s(z0) 343.11/291.59 s(h) -> 1 343.11/291.59 a(h, h, h, z0) -> s(z0) 343.11/291.59 a(c_s(z0), h, h, z1) -> a(z0, z1, h, z1) 343.11/291.59 a(z0, c_s(z1), h, z2) -> a(z0, z1, z2, z2) 343.11/291.59 +(z0, h) -> z0 343.11/291.59 +(h, z0) -> z0 343.11/291.59 app(nil, z0) -> z0 343.11/291.59 app(z0, nil) -> z0 343.11/291.59 app(cons(z0, z1), z2) -> cons(z0, app(z1, z2)) 343.11/291.59 sum(cons(z0, nil)) -> cons(z0, nil) 343.11/291.59 sum(cons(z0, cons(z1, z2))) -> sum(cons(a(z0, z1, h, h), z2)) 343.11/291.59 Tuples: 343.11/291.59 A(c_s(z0), h, h, z1) -> c3(A(z0, z1, h, z1)) 343.11/291.59 A(z0, c_s(z1), h, z2) -> c4(A(z0, z1, z2, z2)) 343.11/291.59 APP(cons(z0, z1), z2) -> c9(APP(z1, z2)) 343.11/291.59 SUM(cons(z0, cons(z1, z2))) -> c11(SUM(cons(a(z0, z1, h, h), z2)), A(z0, z1, h, h)) 343.11/291.59 S tuples: 343.11/291.59 A(c_s(z0), h, h, z1) -> c3(A(z0, z1, h, z1)) 343.11/291.59 A(z0, c_s(z1), h, z2) -> c4(A(z0, z1, z2, z2)) 343.11/291.59 APP(cons(z0, z1), z2) -> c9(APP(z1, z2)) 343.11/291.59 SUM(cons(z0, cons(z1, z2))) -> c11(SUM(cons(a(z0, z1, h, h), z2)), A(z0, z1, h, h)) 343.11/291.59 K tuples:none 343.11/291.59 Defined Rule Symbols: a_4, +_2, s_1, app_2, sum_1 343.11/291.59 343.11/291.59 Defined Pair Symbols: A_4, APP_2, SUM_1 343.11/291.59 343.11/291.59 Compound Symbols: c3_1, c4_1, c9_1, c11_2 343.11/291.59 343.11/291.59 343.11/291.59 ---------------------------------------- 343.11/291.59 343.11/291.59 (13) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) 343.11/291.59 The following rules are not usable and were removed: 343.11/291.59 +(z0, h) -> z0 343.11/291.59 +(h, z0) -> z0 343.11/291.59 app(nil, z0) -> z0 343.11/291.59 app(z0, nil) -> z0 343.11/291.59 app(cons(z0, z1), z2) -> cons(z0, app(z1, z2)) 343.11/291.59 sum(cons(z0, nil)) -> cons(z0, nil) 343.11/291.59 sum(cons(z0, cons(z1, z2))) -> sum(cons(a(z0, z1, h, h), z2)) 343.11/291.59 343.11/291.59 ---------------------------------------- 343.11/291.59 343.11/291.59 (14) 343.11/291.59 Obligation: 343.11/291.59 Complexity Dependency Tuples Problem 343.11/291.59 343.11/291.59 Rules: 343.11/291.59 a(h, h, h, z0) -> s(z0) 343.11/291.59 a(c_s(z0), h, h, z1) -> a(z0, z1, h, z1) 343.11/291.59 a(z0, c_s(z1), h, z2) -> a(z0, z1, z2, z2) 343.11/291.59 s(z0) -> c_s(z0) 343.11/291.59 s(h) -> 1 343.11/291.59 Tuples: 343.11/291.59 A(c_s(z0), h, h, z1) -> c3(A(z0, z1, h, z1)) 343.11/291.59 A(z0, c_s(z1), h, z2) -> c4(A(z0, z1, z2, z2)) 343.11/291.59 APP(cons(z0, z1), z2) -> c9(APP(z1, z2)) 343.11/291.59 SUM(cons(z0, cons(z1, z2))) -> c11(SUM(cons(a(z0, z1, h, h), z2)), A(z0, z1, h, h)) 343.11/291.59 S tuples: 343.11/291.59 A(c_s(z0), h, h, z1) -> c3(A(z0, z1, h, z1)) 343.11/291.59 A(z0, c_s(z1), h, z2) -> c4(A(z0, z1, z2, z2)) 343.11/291.59 APP(cons(z0, z1), z2) -> c9(APP(z1, z2)) 343.11/291.59 SUM(cons(z0, cons(z1, z2))) -> c11(SUM(cons(a(z0, z1, h, h), z2)), A(z0, z1, h, h)) 343.11/291.59 K tuples:none 343.11/291.59 Defined Rule Symbols: a_4, s_1 343.11/291.59 343.11/291.59 Defined Pair Symbols: A_4, APP_2, SUM_1 343.11/291.59 343.11/291.59 Compound Symbols: c3_1, c4_1, c9_1, c11_2 343.11/291.59 343.11/291.59 343.11/291.59 ---------------------------------------- 343.11/291.59 343.11/291.59 (15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) 343.11/291.59 Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. 343.11/291.59 SUM(cons(z0, cons(z1, z2))) -> c11(SUM(cons(a(z0, z1, h, h), z2)), A(z0, z1, h, h)) 343.11/291.59 We considered the (Usable) Rules:none 343.11/291.59 And the Tuples: 343.11/291.59 A(c_s(z0), h, h, z1) -> c3(A(z0, z1, h, z1)) 343.11/291.59 A(z0, c_s(z1), h, z2) -> c4(A(z0, z1, z2, z2)) 343.11/291.59 APP(cons(z0, z1), z2) -> c9(APP(z1, z2)) 343.11/291.59 SUM(cons(z0, cons(z1, z2))) -> c11(SUM(cons(a(z0, z1, h, h), z2)), A(z0, z1, h, h)) 343.11/291.59 The order we found is given by the following interpretation: 343.11/291.59 343.11/291.59 Polynomial interpretation : 343.11/291.59 343.11/291.59 POL(1) = [1] 343.11/291.59 POL(A(x_1, x_2, x_3, x_4)) = [1] + [2]x_4 + x_4^2 343.11/291.59 POL(APP(x_1, x_2)) = x_1*x_2 343.11/291.59 POL(SUM(x_1)) = [2]x_1 + x_1^2 343.11/291.59 POL(a(x_1, x_2, x_3, x_4)) = 0 343.11/291.59 POL(c11(x_1, x_2)) = x_1 + x_2 343.11/291.59 POL(c3(x_1)) = x_1 343.11/291.59 POL(c4(x_1)) = x_1 343.11/291.59 POL(c9(x_1)) = x_1 343.11/291.59 POL(c_s(x_1)) = x_1 343.11/291.59 POL(cons(x_1, x_2)) = [1] + x_2 343.11/291.59 POL(h) = 0 343.11/291.59 POL(s(x_1)) = [1] + x_1 + x_1^2 343.11/291.59 343.11/291.59 ---------------------------------------- 343.11/291.59 343.11/291.59 (16) 343.11/291.59 Obligation: 343.11/291.59 Complexity Dependency Tuples Problem 343.11/291.59 343.11/291.59 Rules: 343.11/291.59 a(h, h, h, z0) -> s(z0) 343.11/291.59 a(c_s(z0), h, h, z1) -> a(z0, z1, h, z1) 343.11/291.59 a(z0, c_s(z1), h, z2) -> a(z0, z1, z2, z2) 343.11/291.59 s(z0) -> c_s(z0) 343.11/291.59 s(h) -> 1 343.11/291.59 Tuples: 343.11/291.59 A(c_s(z0), h, h, z1) -> c3(A(z0, z1, h, z1)) 343.11/291.59 A(z0, c_s(z1), h, z2) -> c4(A(z0, z1, z2, z2)) 343.11/291.59 APP(cons(z0, z1), z2) -> c9(APP(z1, z2)) 343.11/291.59 SUM(cons(z0, cons(z1, z2))) -> c11(SUM(cons(a(z0, z1, h, h), z2)), A(z0, z1, h, h)) 343.11/291.59 S tuples: 343.11/291.59 A(c_s(z0), h, h, z1) -> c3(A(z0, z1, h, z1)) 343.11/291.59 A(z0, c_s(z1), h, z2) -> c4(A(z0, z1, z2, z2)) 343.11/291.59 APP(cons(z0, z1), z2) -> c9(APP(z1, z2)) 343.11/291.59 K tuples: 343.11/291.59 SUM(cons(z0, cons(z1, z2))) -> c11(SUM(cons(a(z0, z1, h, h), z2)), A(z0, z1, h, h)) 343.11/291.59 Defined Rule Symbols: a_4, s_1 343.11/291.59 343.11/291.59 Defined Pair Symbols: A_4, APP_2, SUM_1 343.11/291.59 343.11/291.59 Compound Symbols: c3_1, c4_1, c9_1, c11_2 343.11/291.59 343.11/291.59 343.11/291.59 ---------------------------------------- 343.11/291.59 343.11/291.59 (17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) 343.11/291.59 Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. 343.11/291.59 APP(cons(z0, z1), z2) -> c9(APP(z1, z2)) 343.11/291.59 We considered the (Usable) Rules: 343.11/291.59 s(z0) -> c_s(z0) 343.11/291.59 a(h, h, h, z0) -> s(z0) 343.11/291.59 a(z0, c_s(z1), h, z2) -> a(z0, z1, z2, z2) 343.11/291.59 a(c_s(z0), h, h, z1) -> a(z0, z1, h, z1) 343.11/291.59 s(h) -> 1 343.11/291.59 And the Tuples: 343.11/291.59 A(c_s(z0), h, h, z1) -> c3(A(z0, z1, h, z1)) 343.11/291.59 A(z0, c_s(z1), h, z2) -> c4(A(z0, z1, z2, z2)) 343.11/291.59 APP(cons(z0, z1), z2) -> c9(APP(z1, z2)) 343.11/291.59 SUM(cons(z0, cons(z1, z2))) -> c11(SUM(cons(a(z0, z1, h, h), z2)), A(z0, z1, h, h)) 343.11/291.59 The order we found is given by the following interpretation: 343.11/291.59 343.11/291.59 Polynomial interpretation : 343.11/291.59 343.11/291.59 POL(1) = 0 343.11/291.59 POL(A(x_1, x_2, x_3, x_4)) = 0 343.11/291.59 POL(APP(x_1, x_2)) = x_1 343.11/291.59 POL(SUM(x_1)) = x_1 343.11/291.59 POL(a(x_1, x_2, x_3, x_4)) = x_1 + x_4 343.11/291.59 POL(c11(x_1, x_2)) = x_1 + x_2 343.11/291.59 POL(c3(x_1)) = x_1 343.11/291.59 POL(c4(x_1)) = x_1 343.11/291.59 POL(c9(x_1)) = x_1 343.11/291.59 POL(c_s(x_1)) = [1] + x_1 343.11/291.59 POL(cons(x_1, x_2)) = [1] + x_1 + x_2 343.11/291.59 POL(h) = [1] 343.11/291.59 POL(s(x_1)) = [1] + x_1 343.11/291.59 343.11/291.59 ---------------------------------------- 343.11/291.59 343.11/291.59 (18) 343.11/291.59 Obligation: 343.11/291.59 Complexity Dependency Tuples Problem 343.11/291.59 343.11/291.59 Rules: 343.11/291.59 a(h, h, h, z0) -> s(z0) 343.11/291.59 a(c_s(z0), h, h, z1) -> a(z0, z1, h, z1) 343.11/291.59 a(z0, c_s(z1), h, z2) -> a(z0, z1, z2, z2) 343.11/291.59 s(z0) -> c_s(z0) 343.11/291.59 s(h) -> 1 343.11/291.59 Tuples: 343.11/291.59 A(c_s(z0), h, h, z1) -> c3(A(z0, z1, h, z1)) 343.11/291.59 A(z0, c_s(z1), h, z2) -> c4(A(z0, z1, z2, z2)) 343.11/291.59 APP(cons(z0, z1), z2) -> c9(APP(z1, z2)) 343.11/291.59 SUM(cons(z0, cons(z1, z2))) -> c11(SUM(cons(a(z0, z1, h, h), z2)), A(z0, z1, h, h)) 343.11/291.59 S tuples: 343.11/291.59 A(c_s(z0), h, h, z1) -> c3(A(z0, z1, h, z1)) 343.11/291.59 A(z0, c_s(z1), h, z2) -> c4(A(z0, z1, z2, z2)) 343.11/291.59 K tuples: 343.11/291.59 SUM(cons(z0, cons(z1, z2))) -> c11(SUM(cons(a(z0, z1, h, h), z2)), A(z0, z1, h, h)) 343.11/291.59 APP(cons(z0, z1), z2) -> c9(APP(z1, z2)) 343.11/291.59 Defined Rule Symbols: a_4, s_1 343.11/291.59 343.11/291.59 Defined Pair Symbols: A_4, APP_2, SUM_1 343.11/291.59 343.11/291.59 Compound Symbols: c3_1, c4_1, c9_1, c11_2 343.11/291.59 343.11/291.59 343.11/291.59 ---------------------------------------- 343.11/291.59 343.11/291.59 (19) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) 343.11/291.59 Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. 343.11/291.59 A(c_s(z0), h, h, z1) -> c3(A(z0, z1, h, z1)) 343.11/291.59 We considered the (Usable) Rules: 343.11/291.59 s(z0) -> c_s(z0) 343.11/291.59 a(h, h, h, z0) -> s(z0) 343.11/291.59 a(z0, c_s(z1), h, z2) -> a(z0, z1, z2, z2) 343.11/291.59 a(c_s(z0), h, h, z1) -> a(z0, z1, h, z1) 343.11/291.59 s(h) -> 1 343.11/291.59 And the Tuples: 343.11/291.59 A(c_s(z0), h, h, z1) -> c3(A(z0, z1, h, z1)) 343.11/291.59 A(z0, c_s(z1), h, z2) -> c4(A(z0, z1, z2, z2)) 343.11/291.59 APP(cons(z0, z1), z2) -> c9(APP(z1, z2)) 343.11/291.59 SUM(cons(z0, cons(z1, z2))) -> c11(SUM(cons(a(z0, z1, h, h), z2)), A(z0, z1, h, h)) 343.11/291.59 The order we found is given by the following interpretation: 343.11/291.59 343.11/291.59 Polynomial interpretation : 343.11/291.59 343.11/291.59 POL(1) = [1] 343.11/291.59 POL(A(x_1, x_2, x_3, x_4)) = x_1 + x_4 343.11/291.59 POL(APP(x_1, x_2)) = x_1 343.11/291.59 POL(SUM(x_1)) = x_1 343.11/291.59 POL(a(x_1, x_2, x_3, x_4)) = [1] + x_4 343.11/291.59 POL(c11(x_1, x_2)) = x_1 + x_2 343.11/291.59 POL(c3(x_1)) = x_1 343.11/291.59 POL(c4(x_1)) = x_1 343.11/291.59 POL(c9(x_1)) = x_1 343.11/291.59 POL(c_s(x_1)) = [1] + x_1 343.11/291.59 POL(cons(x_1, x_2)) = [1] + x_1 + x_2 343.11/291.59 POL(h) = 0 343.11/291.59 POL(s(x_1)) = [1] + x_1 343.11/291.59 343.11/291.59 ---------------------------------------- 343.11/291.59 343.11/291.59 (20) 343.11/291.59 Obligation: 343.11/291.59 Complexity Dependency Tuples Problem 343.11/291.59 343.11/291.59 Rules: 343.11/291.59 a(h, h, h, z0) -> s(z0) 343.11/291.59 a(c_s(z0), h, h, z1) -> a(z0, z1, h, z1) 343.11/291.59 a(z0, c_s(z1), h, z2) -> a(z0, z1, z2, z2) 343.11/291.59 s(z0) -> c_s(z0) 343.11/291.59 s(h) -> 1 343.11/291.59 Tuples: 343.11/291.59 A(c_s(z0), h, h, z1) -> c3(A(z0, z1, h, z1)) 343.11/291.59 A(z0, c_s(z1), h, z2) -> c4(A(z0, z1, z2, z2)) 343.11/291.59 APP(cons(z0, z1), z2) -> c9(APP(z1, z2)) 343.11/291.59 SUM(cons(z0, cons(z1, z2))) -> c11(SUM(cons(a(z0, z1, h, h), z2)), A(z0, z1, h, h)) 343.11/291.59 S tuples: 343.11/291.59 A(z0, c_s(z1), h, z2) -> c4(A(z0, z1, z2, z2)) 343.11/291.59 K tuples: 343.11/291.59 SUM(cons(z0, cons(z1, z2))) -> c11(SUM(cons(a(z0, z1, h, h), z2)), A(z0, z1, h, h)) 343.11/291.59 APP(cons(z0, z1), z2) -> c9(APP(z1, z2)) 343.11/291.59 A(c_s(z0), h, h, z1) -> c3(A(z0, z1, h, z1)) 343.11/291.59 Defined Rule Symbols: a_4, s_1 343.11/291.59 343.11/291.59 Defined Pair Symbols: A_4, APP_2, SUM_1 343.11/291.59 343.11/291.59 Compound Symbols: c3_1, c4_1, c9_1, c11_2 343.11/291.59 343.11/291.59 343.11/291.59 ---------------------------------------- 343.11/291.59 343.11/291.59 (21) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) 343.11/291.59 Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. 343.11/291.59 A(z0, c_s(z1), h, z2) -> c4(A(z0, z1, z2, z2)) 343.11/291.59 We considered the (Usable) Rules: 343.11/291.59 s(z0) -> c_s(z0) 343.11/291.59 a(h, h, h, z0) -> s(z0) 343.11/291.59 a(z0, c_s(z1), h, z2) -> a(z0, z1, z2, z2) 343.11/291.59 a(c_s(z0), h, h, z1) -> a(z0, z1, h, z1) 343.11/291.59 s(h) -> 1 343.11/291.59 And the Tuples: 343.11/291.59 A(c_s(z0), h, h, z1) -> c3(A(z0, z1, h, z1)) 343.11/291.59 A(z0, c_s(z1), h, z2) -> c4(A(z0, z1, z2, z2)) 343.11/291.59 APP(cons(z0, z1), z2) -> c9(APP(z1, z2)) 343.11/291.59 SUM(cons(z0, cons(z1, z2))) -> c11(SUM(cons(a(z0, z1, h, h), z2)), A(z0, z1, h, h)) 343.11/291.59 The order we found is given by the following interpretation: 343.11/291.59 343.11/291.59 Polynomial interpretation : 343.11/291.59 343.11/291.59 POL(1) = [2] 343.11/291.59 POL(A(x_1, x_2, x_3, x_4)) = x_2 + [2]x_4 + [2]x_4^2 + x_1*x_4 343.11/291.59 POL(APP(x_1, x_2)) = [2]x_1 + [2]x_1*x_2 + x_1^2 343.11/291.59 POL(SUM(x_1)) = x_1^2 343.11/291.59 POL(a(x_1, x_2, x_3, x_4)) = [2] + x_4 343.11/291.59 POL(c11(x_1, x_2)) = x_1 + x_2 343.11/291.59 POL(c3(x_1)) = x_1 343.11/291.59 POL(c4(x_1)) = x_1 343.11/291.59 POL(c9(x_1)) = x_1 343.11/291.59 POL(c_s(x_1)) = [1] + x_1 343.11/291.59 POL(cons(x_1, x_2)) = [2] + x_1 + x_2 343.11/291.59 POL(h) = 0 343.11/291.59 POL(s(x_1)) = [2] + x_1 343.11/291.59 343.11/291.59 ---------------------------------------- 343.11/291.59 343.11/291.59 (22) 343.11/291.59 Obligation: 343.11/291.59 Complexity Dependency Tuples Problem 343.11/291.59 343.11/291.59 Rules: 343.11/291.59 a(h, h, h, z0) -> s(z0) 343.11/291.59 a(c_s(z0), h, h, z1) -> a(z0, z1, h, z1) 343.11/291.59 a(z0, c_s(z1), h, z2) -> a(z0, z1, z2, z2) 343.11/291.59 s(z0) -> c_s(z0) 343.11/291.59 s(h) -> 1 343.11/291.59 Tuples: 343.11/291.59 A(c_s(z0), h, h, z1) -> c3(A(z0, z1, h, z1)) 343.11/291.59 A(z0, c_s(z1), h, z2) -> c4(A(z0, z1, z2, z2)) 343.11/291.59 APP(cons(z0, z1), z2) -> c9(APP(z1, z2)) 343.11/291.59 SUM(cons(z0, cons(z1, z2))) -> c11(SUM(cons(a(z0, z1, h, h), z2)), A(z0, z1, h, h)) 343.11/291.59 S tuples:none 343.11/291.59 K tuples: 343.11/291.59 SUM(cons(z0, cons(z1, z2))) -> c11(SUM(cons(a(z0, z1, h, h), z2)), A(z0, z1, h, h)) 343.11/291.59 APP(cons(z0, z1), z2) -> c9(APP(z1, z2)) 343.11/291.59 A(c_s(z0), h, h, z1) -> c3(A(z0, z1, h, z1)) 343.11/291.59 A(z0, c_s(z1), h, z2) -> c4(A(z0, z1, z2, z2)) 343.11/291.59 Defined Rule Symbols: a_4, s_1 343.11/291.59 343.11/291.59 Defined Pair Symbols: A_4, APP_2, SUM_1 343.11/291.59 343.11/291.59 Compound Symbols: c3_1, c4_1, c9_1, c11_2 343.11/291.59 343.11/291.59 343.11/291.59 ---------------------------------------- 343.11/291.59 343.11/291.59 (23) SIsEmptyProof (BOTH BOUNDS(ID, ID)) 343.11/291.59 The set S is empty 343.11/291.59 ---------------------------------------- 343.11/291.59 343.11/291.59 (24) 343.11/291.59 BOUNDS(1, 1) 343.11/291.59 343.11/291.59 ---------------------------------------- 343.11/291.59 343.11/291.59 (25) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 343.11/291.59 Transformed a relative TRS into a decreasing-loop problem. 343.11/291.59 ---------------------------------------- 343.11/291.59 343.11/291.59 (26) 343.11/291.59 Obligation: 343.11/291.59 Analyzing the following TRS for decreasing loops: 343.11/291.59 343.11/291.59 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). 343.11/291.59 343.11/291.59 343.11/291.59 The TRS R consists of the following rules: 343.11/291.59 343.11/291.59 a(h, h, h, x) -> s(x) 343.11/291.59 a(l, x, s(y), h) -> a(l, x, y, s(h)) 343.11/291.59 a(l, x, s(y), s(z)) -> a(l, x, y, a(l, x, s(y), z)) 343.11/291.59 a(l, s(x), h, z) -> a(l, x, z, z) 343.11/291.59 a(s(l), h, h, z) -> a(l, z, h, z) 343.11/291.59 +(x, h) -> x 343.11/291.59 +(h, x) -> x 343.11/291.59 +(s(x), s(y)) -> s(s(+(x, y))) 343.11/291.59 +(+(x, y), z) -> +(x, +(y, z)) 343.11/291.59 s(h) -> 1 343.11/291.59 app(nil, k) -> k 343.11/291.59 app(l, nil) -> l 343.11/291.59 app(cons(x, l), k) -> cons(x, app(l, k)) 343.11/291.59 sum(cons(x, nil)) -> cons(x, nil) 343.11/291.59 sum(cons(x, cons(y, l))) -> sum(cons(a(x, y, h, h), l)) 343.11/291.59 343.11/291.59 S is empty. 343.11/291.59 Rewrite Strategy: FULL 343.11/291.59 ---------------------------------------- 343.11/291.59 343.11/291.59 (27) DecreasingLoopProof (LOWER BOUND(ID)) 343.11/291.59 The following loop(s) give(s) rise to the lower bound Omega(n^1): 343.11/291.59 343.11/291.59 The rewrite sequence 343.11/291.59 343.11/291.59 app(cons(x, l), k) ->^+ cons(x, app(l, k)) 343.11/291.59 343.11/291.59 gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. 343.11/291.59 343.11/291.59 The pumping substitution is [l / cons(x, l)]. 343.11/291.59 343.11/291.59 The result substitution is [ ]. 343.11/291.59 343.11/291.59 343.11/291.59 343.11/291.59 343.11/291.59 ---------------------------------------- 343.11/291.59 343.11/291.59 (28) 343.11/291.59 Complex Obligation (BEST) 343.11/291.59 343.11/291.59 ---------------------------------------- 343.11/291.59 343.11/291.59 (29) 343.11/291.59 Obligation: 343.11/291.59 Proved the lower bound n^1 for the following obligation: 343.11/291.59 343.11/291.59 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). 343.11/291.59 343.11/291.59 343.11/291.59 The TRS R consists of the following rules: 343.11/291.59 343.11/291.59 a(h, h, h, x) -> s(x) 343.11/291.59 a(l, x, s(y), h) -> a(l, x, y, s(h)) 343.11/291.59 a(l, x, s(y), s(z)) -> a(l, x, y, a(l, x, s(y), z)) 343.11/291.59 a(l, s(x), h, z) -> a(l, x, z, z) 343.11/291.59 a(s(l), h, h, z) -> a(l, z, h, z) 343.11/291.59 +(x, h) -> x 343.11/291.59 +(h, x) -> x 343.11/291.59 +(s(x), s(y)) -> s(s(+(x, y))) 343.11/291.59 +(+(x, y), z) -> +(x, +(y, z)) 343.11/291.59 s(h) -> 1 343.11/291.59 app(nil, k) -> k 343.11/291.59 app(l, nil) -> l 343.11/291.59 app(cons(x, l), k) -> cons(x, app(l, k)) 343.11/291.59 sum(cons(x, nil)) -> cons(x, nil) 343.11/291.59 sum(cons(x, cons(y, l))) -> sum(cons(a(x, y, h, h), l)) 343.11/291.59 343.11/291.59 S is empty. 343.11/291.59 Rewrite Strategy: FULL 343.11/291.59 ---------------------------------------- 343.11/291.59 343.11/291.59 (30) LowerBoundPropagationProof (FINISHED) 343.11/291.59 Propagated lower bound. 343.11/291.59 ---------------------------------------- 343.11/291.59 343.11/291.59 (31) 343.11/291.59 BOUNDS(n^1, INF) 343.11/291.59 343.11/291.59 ---------------------------------------- 343.11/291.59 343.11/291.59 (32) 343.11/291.59 Obligation: 343.11/291.59 Analyzing the following TRS for decreasing loops: 343.11/291.59 343.11/291.59 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). 343.11/291.59 343.11/291.59 343.11/291.59 The TRS R consists of the following rules: 343.11/291.59 343.11/291.59 a(h, h, h, x) -> s(x) 343.11/291.59 a(l, x, s(y), h) -> a(l, x, y, s(h)) 343.11/291.59 a(l, x, s(y), s(z)) -> a(l, x, y, a(l, x, s(y), z)) 343.11/291.59 a(l, s(x), h, z) -> a(l, x, z, z) 343.11/291.59 a(s(l), h, h, z) -> a(l, z, h, z) 343.11/291.59 +(x, h) -> x 343.11/291.59 +(h, x) -> x 343.11/291.59 +(s(x), s(y)) -> s(s(+(x, y))) 343.11/291.59 +(+(x, y), z) -> +(x, +(y, z)) 343.11/291.59 s(h) -> 1 343.11/291.59 app(nil, k) -> k 343.11/291.59 app(l, nil) -> l 343.11/291.59 app(cons(x, l), k) -> cons(x, app(l, k)) 343.11/291.59 sum(cons(x, nil)) -> cons(x, nil) 343.11/291.59 sum(cons(x, cons(y, l))) -> sum(cons(a(x, y, h, h), l)) 343.11/291.59 343.11/291.59 S is empty. 343.11/291.59 Rewrite Strategy: FULL 343.19/291.64 EOF