3.13/1.60 WORST_CASE(NON_POLY, ?) 3.13/1.60 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.13/1.60 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.13/1.60 3.13/1.60 3.13/1.60 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.13/1.60 3.13/1.60 (0) CpxTRS 3.13/1.60 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.13/1.60 (2) TRS for Loop Detection 3.13/1.60 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.13/1.60 (4) BEST 3.13/1.60 (5) proven lower bound 3.13/1.60 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 3.13/1.60 (7) BOUNDS(n^1, INF) 3.13/1.60 (8) TRS for Loop Detection 3.13/1.60 (9) InfiniteLowerBoundProof [FINISHED, 0 ms] 3.13/1.60 (10) BOUNDS(INF, INF) 3.13/1.60 3.13/1.60 3.13/1.60 ---------------------------------------- 3.13/1.60 3.13/1.60 (0) 3.13/1.60 Obligation: 3.13/1.60 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.13/1.60 3.13/1.60 3.13/1.60 The TRS R consists of the following rules: 3.13/1.60 3.13/1.60 fib(N) -> sel(N, fib1(s(0), s(0))) 3.13/1.60 fib1(X, Y) -> cons(X, fib1(Y, add(X, Y))) 3.13/1.60 add(0, X) -> X 3.13/1.60 add(s(X), Y) -> s(add(X, Y)) 3.13/1.60 sel(0, cons(X, XS)) -> X 3.13/1.60 sel(s(N), cons(X, XS)) -> sel(N, XS) 3.13/1.60 3.13/1.60 S is empty. 3.13/1.60 Rewrite Strategy: FULL 3.13/1.60 ---------------------------------------- 3.13/1.60 3.13/1.60 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.13/1.60 Transformed a relative TRS into a decreasing-loop problem. 3.13/1.60 ---------------------------------------- 3.13/1.60 3.13/1.60 (2) 3.13/1.60 Obligation: 3.13/1.60 Analyzing the following TRS for decreasing loops: 3.13/1.60 3.13/1.60 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.13/1.60 3.13/1.60 3.13/1.60 The TRS R consists of the following rules: 3.13/1.60 3.13/1.60 fib(N) -> sel(N, fib1(s(0), s(0))) 3.13/1.60 fib1(X, Y) -> cons(X, fib1(Y, add(X, Y))) 3.13/1.60 add(0, X) -> X 3.13/1.60 add(s(X), Y) -> s(add(X, Y)) 3.13/1.60 sel(0, cons(X, XS)) -> X 3.13/1.60 sel(s(N), cons(X, XS)) -> sel(N, XS) 3.13/1.60 3.13/1.60 S is empty. 3.13/1.60 Rewrite Strategy: FULL 3.13/1.60 ---------------------------------------- 3.13/1.60 3.13/1.60 (3) DecreasingLoopProof (LOWER BOUND(ID)) 3.13/1.60 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.13/1.60 3.13/1.60 The rewrite sequence 3.13/1.60 3.13/1.60 add(s(X), Y) ->^+ s(add(X, Y)) 3.13/1.60 3.13/1.60 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.13/1.60 3.13/1.60 The pumping substitution is [X / s(X)]. 3.13/1.60 3.13/1.60 The result substitution is [ ]. 3.13/1.60 3.13/1.60 3.13/1.60 3.13/1.60 3.13/1.60 ---------------------------------------- 3.13/1.60 3.13/1.60 (4) 3.13/1.60 Complex Obligation (BEST) 3.13/1.60 3.13/1.60 ---------------------------------------- 3.13/1.60 3.13/1.60 (5) 3.13/1.60 Obligation: 3.13/1.60 Proved the lower bound n^1 for the following obligation: 3.13/1.60 3.13/1.60 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.13/1.60 3.13/1.60 3.13/1.60 The TRS R consists of the following rules: 3.13/1.60 3.13/1.60 fib(N) -> sel(N, fib1(s(0), s(0))) 3.13/1.60 fib1(X, Y) -> cons(X, fib1(Y, add(X, Y))) 3.13/1.60 add(0, X) -> X 3.13/1.60 add(s(X), Y) -> s(add(X, Y)) 3.13/1.60 sel(0, cons(X, XS)) -> X 3.13/1.60 sel(s(N), cons(X, XS)) -> sel(N, XS) 3.13/1.60 3.13/1.60 S is empty. 3.13/1.60 Rewrite Strategy: FULL 3.13/1.60 ---------------------------------------- 3.13/1.60 3.13/1.60 (6) LowerBoundPropagationProof (FINISHED) 3.13/1.60 Propagated lower bound. 3.13/1.60 ---------------------------------------- 3.13/1.60 3.13/1.60 (7) 3.13/1.60 BOUNDS(n^1, INF) 3.13/1.60 3.13/1.60 ---------------------------------------- 3.13/1.60 3.13/1.60 (8) 3.13/1.60 Obligation: 3.13/1.60 Analyzing the following TRS for decreasing loops: 3.13/1.60 3.13/1.60 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.13/1.60 3.13/1.60 3.13/1.60 The TRS R consists of the following rules: 3.13/1.60 3.13/1.60 fib(N) -> sel(N, fib1(s(0), s(0))) 3.13/1.60 fib1(X, Y) -> cons(X, fib1(Y, add(X, Y))) 3.13/1.60 add(0, X) -> X 3.13/1.60 add(s(X), Y) -> s(add(X, Y)) 3.13/1.60 sel(0, cons(X, XS)) -> X 3.13/1.60 sel(s(N), cons(X, XS)) -> sel(N, XS) 3.13/1.60 3.13/1.60 S is empty. 3.13/1.60 Rewrite Strategy: FULL 3.13/1.60 ---------------------------------------- 3.13/1.60 3.13/1.60 (9) InfiniteLowerBoundProof (FINISHED) 3.13/1.60 The following loop proves infinite runtime complexity: 3.13/1.60 3.13/1.60 The rewrite sequence 3.13/1.60 3.13/1.60 fib1(X, Y) ->^+ cons(X, fib1(Y, add(X, Y))) 3.13/1.60 3.13/1.60 gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. 3.13/1.60 3.13/1.60 The pumping substitution is [ ]. 3.13/1.60 3.13/1.60 The result substitution is [X / Y, Y / add(X, Y)]. 3.13/1.60 3.13/1.60 3.13/1.60 3.13/1.60 3.13/1.60 ---------------------------------------- 3.13/1.60 3.13/1.60 (10) 3.13/1.60 BOUNDS(INF, INF) 3.41/1.63 EOF