3.10/1.52 WORST_CASE(NON_POLY, ?) 3.10/1.53 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 3.10/1.53 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.10/1.53 3.10/1.53 3.10/1.53 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.10/1.53 3.10/1.53 (0) CpxTRS 3.10/1.53 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.10/1.53 (2) TRS for Loop Detection 3.10/1.53 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.10/1.53 (4) BEST 3.10/1.53 (5) proven lower bound 3.10/1.53 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 3.10/1.53 (7) BOUNDS(n^1, INF) 3.10/1.53 (8) TRS for Loop Detection 3.10/1.53 (9) InfiniteLowerBoundProof [FINISHED, 0 ms] 3.10/1.53 (10) BOUNDS(INF, INF) 3.10/1.53 3.10/1.53 3.10/1.53 ---------------------------------------- 3.10/1.53 3.10/1.53 (0) 3.10/1.53 Obligation: 3.10/1.53 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.10/1.53 3.10/1.53 3.10/1.53 The TRS R consists of the following rules: 3.10/1.53 3.10/1.53 p(0) -> 0 3.10/1.53 p(s(X)) -> X 3.10/1.53 leq(0, Y) -> true 3.10/1.53 leq(s(X), 0) -> false 3.10/1.53 leq(s(X), s(Y)) -> leq(X, Y) 3.10/1.53 if(true, X, Y) -> X 3.10/1.53 if(false, X, Y) -> Y 3.10/1.53 diff(X, Y) -> if(leq(X, Y), 0, s(diff(p(X), Y))) 3.10/1.53 3.10/1.53 S is empty. 3.10/1.53 Rewrite Strategy: FULL 3.10/1.53 ---------------------------------------- 3.10/1.53 3.10/1.53 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.10/1.53 Transformed a relative TRS into a decreasing-loop problem. 3.10/1.53 ---------------------------------------- 3.10/1.53 3.10/1.53 (2) 3.10/1.53 Obligation: 3.10/1.53 Analyzing the following TRS for decreasing loops: 3.10/1.53 3.10/1.53 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.10/1.53 3.10/1.53 3.10/1.53 The TRS R consists of the following rules: 3.10/1.53 3.10/1.53 p(0) -> 0 3.10/1.53 p(s(X)) -> X 3.10/1.53 leq(0, Y) -> true 3.10/1.53 leq(s(X), 0) -> false 3.10/1.53 leq(s(X), s(Y)) -> leq(X, Y) 3.10/1.53 if(true, X, Y) -> X 3.10/1.53 if(false, X, Y) -> Y 3.10/1.53 diff(X, Y) -> if(leq(X, Y), 0, s(diff(p(X), Y))) 3.10/1.53 3.10/1.53 S is empty. 3.10/1.53 Rewrite Strategy: FULL 3.10/1.53 ---------------------------------------- 3.10/1.53 3.10/1.53 (3) DecreasingLoopProof (LOWER BOUND(ID)) 3.10/1.53 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.10/1.53 3.10/1.53 The rewrite sequence 3.10/1.53 3.10/1.53 leq(s(X), s(Y)) ->^+ leq(X, Y) 3.10/1.53 3.10/1.53 gives rise to a decreasing loop by considering the right hand sides subterm at position []. 3.10/1.53 3.10/1.53 The pumping substitution is [X / s(X), Y / s(Y)]. 3.10/1.53 3.10/1.53 The result substitution is [ ]. 3.10/1.53 3.10/1.53 3.10/1.53 3.10/1.53 3.10/1.53 ---------------------------------------- 3.10/1.53 3.10/1.53 (4) 3.10/1.53 Complex Obligation (BEST) 3.10/1.53 3.10/1.53 ---------------------------------------- 3.10/1.53 3.10/1.53 (5) 3.10/1.53 Obligation: 3.10/1.53 Proved the lower bound n^1 for the following obligation: 3.10/1.53 3.10/1.53 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.10/1.53 3.10/1.53 3.10/1.53 The TRS R consists of the following rules: 3.10/1.53 3.10/1.53 p(0) -> 0 3.10/1.53 p(s(X)) -> X 3.10/1.53 leq(0, Y) -> true 3.10/1.53 leq(s(X), 0) -> false 3.10/1.53 leq(s(X), s(Y)) -> leq(X, Y) 3.10/1.53 if(true, X, Y) -> X 3.10/1.53 if(false, X, Y) -> Y 3.10/1.53 diff(X, Y) -> if(leq(X, Y), 0, s(diff(p(X), Y))) 3.10/1.53 3.10/1.53 S is empty. 3.10/1.53 Rewrite Strategy: FULL 3.10/1.53 ---------------------------------------- 3.10/1.53 3.10/1.53 (6) LowerBoundPropagationProof (FINISHED) 3.10/1.53 Propagated lower bound. 3.10/1.53 ---------------------------------------- 3.10/1.53 3.10/1.53 (7) 3.10/1.53 BOUNDS(n^1, INF) 3.10/1.53 3.10/1.53 ---------------------------------------- 3.10/1.53 3.10/1.53 (8) 3.10/1.53 Obligation: 3.10/1.53 Analyzing the following TRS for decreasing loops: 3.10/1.53 3.10/1.53 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.10/1.53 3.10/1.53 3.10/1.53 The TRS R consists of the following rules: 3.10/1.53 3.10/1.53 p(0) -> 0 3.10/1.53 p(s(X)) -> X 3.10/1.53 leq(0, Y) -> true 3.10/1.53 leq(s(X), 0) -> false 3.10/1.53 leq(s(X), s(Y)) -> leq(X, Y) 3.10/1.53 if(true, X, Y) -> X 3.10/1.53 if(false, X, Y) -> Y 3.10/1.53 diff(X, Y) -> if(leq(X, Y), 0, s(diff(p(X), Y))) 3.10/1.53 3.10/1.53 S is empty. 3.10/1.53 Rewrite Strategy: FULL 3.10/1.53 ---------------------------------------- 3.10/1.53 3.10/1.53 (9) InfiniteLowerBoundProof (FINISHED) 3.10/1.53 The following loop proves infinite runtime complexity: 3.10/1.53 3.10/1.53 The rewrite sequence 3.10/1.53 3.10/1.53 diff(X, Y) ->^+ if(leq(X, Y), 0, s(diff(p(X), Y))) 3.10/1.53 3.10/1.53 gives rise to a decreasing loop by considering the right hand sides subterm at position [2,0]. 3.10/1.53 3.10/1.53 The pumping substitution is [ ]. 3.10/1.53 3.10/1.53 The result substitution is [X / p(X)]. 3.10/1.53 3.10/1.53 3.10/1.53 3.10/1.53 3.10/1.53 ---------------------------------------- 3.10/1.53 3.10/1.53 (10) 3.10/1.53 BOUNDS(INF, INF) 3.10/1.55 EOF