3.12/1.60 WORST_CASE(NON_POLY, ?) 3.12/1.61 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 3.12/1.61 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.12/1.61 3.12/1.61 3.12/1.61 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.12/1.61 3.12/1.61 (0) CpxTRS 3.12/1.61 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.12/1.61 (2) TRS for Loop Detection 3.12/1.61 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.12/1.61 (4) BEST 3.12/1.61 (5) proven lower bound 3.12/1.61 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 3.12/1.61 (7) BOUNDS(n^1, INF) 3.12/1.61 (8) TRS for Loop Detection 3.12/1.61 (9) InfiniteLowerBoundProof [FINISHED, 0 ms] 3.12/1.61 (10) BOUNDS(INF, INF) 3.12/1.61 3.12/1.61 3.12/1.61 ---------------------------------------- 3.12/1.61 3.12/1.61 (0) 3.12/1.61 Obligation: 3.12/1.61 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.12/1.61 3.12/1.61 3.12/1.61 The TRS R consists of the following rules: 3.12/1.61 3.12/1.61 sel(s(X), cons(Y, Z)) -> sel(X, Z) 3.12/1.61 sel(0, cons(X, Z)) -> X 3.12/1.61 first(0, Z) -> nil 3.12/1.61 first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) 3.12/1.61 from(X) -> cons(X, from(s(X))) 3.12/1.61 sel1(s(X), cons(Y, Z)) -> sel1(X, Z) 3.12/1.61 sel1(0, cons(X, Z)) -> quote(X) 3.12/1.61 first1(0, Z) -> nil1 3.12/1.61 first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, Z)) 3.12/1.61 quote(0) -> 01 3.12/1.61 quote1(cons(X, Z)) -> cons1(quote(X), quote1(Z)) 3.12/1.61 quote1(nil) -> nil1 3.12/1.61 quote(s(X)) -> s1(quote(X)) 3.12/1.61 quote(sel(X, Z)) -> sel1(X, Z) 3.12/1.61 quote1(first(X, Z)) -> first1(X, Z) 3.12/1.61 unquote(01) -> 0 3.12/1.61 unquote(s1(X)) -> s(unquote(X)) 3.12/1.61 unquote1(nil1) -> nil 3.12/1.61 unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z)) 3.12/1.61 fcons(X, Z) -> cons(X, Z) 3.12/1.61 3.12/1.61 S is empty. 3.12/1.61 Rewrite Strategy: FULL 3.12/1.61 ---------------------------------------- 3.12/1.61 3.12/1.61 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.12/1.61 Transformed a relative TRS into a decreasing-loop problem. 3.12/1.61 ---------------------------------------- 3.12/1.61 3.12/1.61 (2) 3.12/1.61 Obligation: 3.12/1.61 Analyzing the following TRS for decreasing loops: 3.12/1.61 3.12/1.61 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.12/1.61 3.12/1.61 3.12/1.61 The TRS R consists of the following rules: 3.12/1.61 3.12/1.61 sel(s(X), cons(Y, Z)) -> sel(X, Z) 3.12/1.61 sel(0, cons(X, Z)) -> X 3.12/1.61 first(0, Z) -> nil 3.12/1.61 first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) 3.12/1.61 from(X) -> cons(X, from(s(X))) 3.12/1.61 sel1(s(X), cons(Y, Z)) -> sel1(X, Z) 3.12/1.61 sel1(0, cons(X, Z)) -> quote(X) 3.12/1.61 first1(0, Z) -> nil1 3.12/1.61 first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, Z)) 3.12/1.61 quote(0) -> 01 3.12/1.61 quote1(cons(X, Z)) -> cons1(quote(X), quote1(Z)) 3.12/1.61 quote1(nil) -> nil1 3.12/1.61 quote(s(X)) -> s1(quote(X)) 3.12/1.61 quote(sel(X, Z)) -> sel1(X, Z) 3.12/1.61 quote1(first(X, Z)) -> first1(X, Z) 3.12/1.61 unquote(01) -> 0 3.12/1.61 unquote(s1(X)) -> s(unquote(X)) 3.12/1.61 unquote1(nil1) -> nil 3.12/1.61 unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z)) 3.12/1.61 fcons(X, Z) -> cons(X, Z) 3.12/1.61 3.12/1.61 S is empty. 3.12/1.61 Rewrite Strategy: FULL 3.12/1.61 ---------------------------------------- 3.12/1.61 3.12/1.61 (3) DecreasingLoopProof (LOWER BOUND(ID)) 3.12/1.61 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.12/1.61 3.12/1.61 The rewrite sequence 3.12/1.61 3.12/1.61 unquote1(cons1(X, Z)) ->^+ fcons(unquote(X), unquote1(Z)) 3.12/1.61 3.12/1.61 gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. 3.12/1.61 3.12/1.61 The pumping substitution is [Z / cons1(X, Z)]. 3.12/1.61 3.12/1.61 The result substitution is [ ]. 3.12/1.61 3.12/1.61 3.12/1.61 3.12/1.61 3.12/1.61 ---------------------------------------- 3.12/1.61 3.12/1.61 (4) 3.12/1.61 Complex Obligation (BEST) 3.12/1.61 3.12/1.61 ---------------------------------------- 3.12/1.61 3.12/1.61 (5) 3.12/1.61 Obligation: 3.12/1.61 Proved the lower bound n^1 for the following obligation: 3.12/1.61 3.12/1.61 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.12/1.61 3.12/1.61 3.12/1.61 The TRS R consists of the following rules: 3.12/1.61 3.12/1.61 sel(s(X), cons(Y, Z)) -> sel(X, Z) 3.12/1.61 sel(0, cons(X, Z)) -> X 3.12/1.61 first(0, Z) -> nil 3.12/1.61 first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) 3.12/1.61 from(X) -> cons(X, from(s(X))) 3.12/1.61 sel1(s(X), cons(Y, Z)) -> sel1(X, Z) 3.12/1.61 sel1(0, cons(X, Z)) -> quote(X) 3.12/1.61 first1(0, Z) -> nil1 3.12/1.61 first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, Z)) 3.12/1.61 quote(0) -> 01 3.12/1.61 quote1(cons(X, Z)) -> cons1(quote(X), quote1(Z)) 3.12/1.61 quote1(nil) -> nil1 3.12/1.61 quote(s(X)) -> s1(quote(X)) 3.12/1.61 quote(sel(X, Z)) -> sel1(X, Z) 3.12/1.61 quote1(first(X, Z)) -> first1(X, Z) 3.12/1.61 unquote(01) -> 0 3.12/1.61 unquote(s1(X)) -> s(unquote(X)) 3.12/1.61 unquote1(nil1) -> nil 3.12/1.61 unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z)) 3.12/1.61 fcons(X, Z) -> cons(X, Z) 3.12/1.61 3.12/1.61 S is empty. 3.12/1.61 Rewrite Strategy: FULL 3.12/1.61 ---------------------------------------- 3.12/1.61 3.12/1.61 (6) LowerBoundPropagationProof (FINISHED) 3.12/1.61 Propagated lower bound. 3.12/1.61 ---------------------------------------- 3.12/1.61 3.12/1.61 (7) 3.12/1.61 BOUNDS(n^1, INF) 3.12/1.61 3.12/1.61 ---------------------------------------- 3.12/1.61 3.12/1.61 (8) 3.12/1.61 Obligation: 3.12/1.61 Analyzing the following TRS for decreasing loops: 3.12/1.61 3.12/1.61 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.12/1.61 3.12/1.61 3.12/1.61 The TRS R consists of the following rules: 3.12/1.61 3.12/1.61 sel(s(X), cons(Y, Z)) -> sel(X, Z) 3.12/1.61 sel(0, cons(X, Z)) -> X 3.12/1.61 first(0, Z) -> nil 3.12/1.61 first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) 3.12/1.61 from(X) -> cons(X, from(s(X))) 3.12/1.61 sel1(s(X), cons(Y, Z)) -> sel1(X, Z) 3.12/1.61 sel1(0, cons(X, Z)) -> quote(X) 3.12/1.61 first1(0, Z) -> nil1 3.12/1.61 first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, Z)) 3.12/1.61 quote(0) -> 01 3.12/1.61 quote1(cons(X, Z)) -> cons1(quote(X), quote1(Z)) 3.12/1.61 quote1(nil) -> nil1 3.12/1.61 quote(s(X)) -> s1(quote(X)) 3.12/1.61 quote(sel(X, Z)) -> sel1(X, Z) 3.12/1.61 quote1(first(X, Z)) -> first1(X, Z) 3.12/1.61 unquote(01) -> 0 3.12/1.61 unquote(s1(X)) -> s(unquote(X)) 3.12/1.61 unquote1(nil1) -> nil 3.12/1.61 unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z)) 3.12/1.61 fcons(X, Z) -> cons(X, Z) 3.12/1.61 3.12/1.61 S is empty. 3.12/1.61 Rewrite Strategy: FULL 3.12/1.61 ---------------------------------------- 3.12/1.61 3.12/1.61 (9) InfiniteLowerBoundProof (FINISHED) 3.12/1.61 The following loop proves infinite runtime complexity: 3.12/1.61 3.12/1.61 The rewrite sequence 3.12/1.61 3.12/1.61 from(X) ->^+ cons(X, from(s(X))) 3.12/1.61 3.12/1.61 gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. 3.12/1.61 3.12/1.61 The pumping substitution is [ ]. 3.12/1.61 3.12/1.61 The result substitution is [X / s(X)]. 3.12/1.61 3.12/1.61 3.12/1.61 3.12/1.61 3.12/1.61 ---------------------------------------- 3.12/1.61 3.12/1.61 (10) 3.12/1.61 BOUNDS(INF, INF) 3.43/1.64 EOF