3.40/2.22 WORST_CASE(NON_POLY, ?) 3.40/2.23 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.40/2.23 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.40/2.23 3.40/2.23 3.40/2.23 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.40/2.23 3.40/2.23 (0) CpxTRS 3.40/2.23 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.40/2.23 (2) TRS for Loop Detection 3.40/2.23 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.40/2.23 (4) BEST 3.40/2.23 (5) proven lower bound 3.40/2.23 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 3.40/2.23 (7) BOUNDS(n^1, INF) 3.40/2.23 (8) TRS for Loop Detection 3.40/2.23 (9) InfiniteLowerBoundProof [FINISHED, 0 ms] 3.40/2.23 (10) BOUNDS(INF, INF) 3.40/2.23 3.40/2.23 3.40/2.23 ---------------------------------------- 3.40/2.23 3.40/2.23 (0) 3.40/2.23 Obligation: 3.40/2.23 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.40/2.23 3.40/2.23 3.40/2.23 The TRS R consists of the following rules: 3.40/2.23 3.40/2.23 f(X) -> cons(X, f(g(X))) 3.40/2.23 g(0) -> s(0) 3.40/2.23 g(s(X)) -> s(s(g(X))) 3.40/2.23 sel(0, cons(X, Y)) -> X 3.40/2.23 sel(s(X), cons(Y, Z)) -> sel(X, Z) 3.40/2.23 3.40/2.23 S is empty. 3.40/2.23 Rewrite Strategy: FULL 3.40/2.23 ---------------------------------------- 3.40/2.23 3.40/2.23 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.40/2.23 Transformed a relative TRS into a decreasing-loop problem. 3.40/2.23 ---------------------------------------- 3.40/2.23 3.40/2.23 (2) 3.40/2.23 Obligation: 3.40/2.23 Analyzing the following TRS for decreasing loops: 3.40/2.23 3.40/2.23 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.40/2.23 3.40/2.23 3.40/2.23 The TRS R consists of the following rules: 3.40/2.23 3.40/2.23 f(X) -> cons(X, f(g(X))) 3.40/2.23 g(0) -> s(0) 3.40/2.23 g(s(X)) -> s(s(g(X))) 3.40/2.23 sel(0, cons(X, Y)) -> X 3.40/2.23 sel(s(X), cons(Y, Z)) -> sel(X, Z) 3.40/2.23 3.40/2.23 S is empty. 3.40/2.23 Rewrite Strategy: FULL 3.40/2.23 ---------------------------------------- 3.40/2.23 3.40/2.23 (3) DecreasingLoopProof (LOWER BOUND(ID)) 3.40/2.23 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.40/2.23 3.40/2.23 The rewrite sequence 3.40/2.23 3.40/2.23 sel(s(X), cons(Y, Z)) ->^+ sel(X, Z) 3.40/2.23 3.40/2.23 gives rise to a decreasing loop by considering the right hand sides subterm at position []. 3.40/2.23 3.40/2.23 The pumping substitution is [X / s(X), Z / cons(Y, Z)]. 3.40/2.23 3.40/2.23 The result substitution is [ ]. 3.40/2.23 3.40/2.23 3.40/2.23 3.40/2.23 3.40/2.23 ---------------------------------------- 3.40/2.23 3.40/2.23 (4) 3.40/2.23 Complex Obligation (BEST) 3.40/2.23 3.40/2.23 ---------------------------------------- 3.40/2.23 3.40/2.23 (5) 3.40/2.23 Obligation: 3.40/2.23 Proved the lower bound n^1 for the following obligation: 3.40/2.23 3.40/2.23 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.40/2.23 3.40/2.23 3.40/2.23 The TRS R consists of the following rules: 3.40/2.23 3.40/2.23 f(X) -> cons(X, f(g(X))) 3.40/2.23 g(0) -> s(0) 3.40/2.23 g(s(X)) -> s(s(g(X))) 3.40/2.23 sel(0, cons(X, Y)) -> X 3.40/2.23 sel(s(X), cons(Y, Z)) -> sel(X, Z) 3.40/2.23 3.40/2.23 S is empty. 3.40/2.23 Rewrite Strategy: FULL 3.40/2.23 ---------------------------------------- 3.40/2.23 3.40/2.23 (6) LowerBoundPropagationProof (FINISHED) 3.40/2.23 Propagated lower bound. 3.40/2.23 ---------------------------------------- 3.40/2.23 3.40/2.23 (7) 3.40/2.23 BOUNDS(n^1, INF) 3.40/2.23 3.40/2.23 ---------------------------------------- 3.40/2.23 3.40/2.23 (8) 3.40/2.23 Obligation: 3.40/2.23 Analyzing the following TRS for decreasing loops: 3.40/2.23 3.40/2.23 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.40/2.23 3.40/2.23 3.40/2.23 The TRS R consists of the following rules: 3.40/2.23 3.40/2.23 f(X) -> cons(X, f(g(X))) 3.40/2.23 g(0) -> s(0) 3.40/2.23 g(s(X)) -> s(s(g(X))) 3.40/2.23 sel(0, cons(X, Y)) -> X 3.40/2.23 sel(s(X), cons(Y, Z)) -> sel(X, Z) 3.40/2.23 3.40/2.23 S is empty. 3.40/2.23 Rewrite Strategy: FULL 3.40/2.23 ---------------------------------------- 3.40/2.23 3.40/2.23 (9) InfiniteLowerBoundProof (FINISHED) 3.40/2.23 The following loop proves infinite runtime complexity: 3.40/2.23 3.40/2.23 The rewrite sequence 3.40/2.23 3.40/2.23 f(X) ->^+ cons(X, f(g(X))) 3.40/2.23 3.40/2.23 gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. 3.40/2.23 3.40/2.23 The pumping substitution is [ ]. 3.40/2.23 3.40/2.23 The result substitution is [X / g(X)]. 3.40/2.23 3.40/2.23 3.40/2.23 3.40/2.23 3.40/2.23 ---------------------------------------- 3.40/2.23 3.40/2.23 (10) 3.40/2.23 BOUNDS(INF, INF) 3.40/2.25 EOF