22.95/8.94 WORST_CASE(Omega(n^1), O(n^1)) 22.95/8.95 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 22.95/8.95 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 22.95/8.95 22.95/8.95 22.95/8.95 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 22.95/8.95 22.95/8.95 (0) CpxTRS 22.95/8.95 (1) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] 22.95/8.95 (2) CpxTRS 22.95/8.95 (3) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] 22.95/8.95 (4) CpxWeightedTrs 22.95/8.95 (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 22.95/8.95 (6) CpxTypedWeightedTrs 22.95/8.95 (7) CompletionProof [UPPER BOUND(ID), 0 ms] 22.95/8.95 (8) CpxTypedWeightedCompleteTrs 22.95/8.95 (9) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] 22.95/8.95 (10) CpxTypedWeightedCompleteTrs 22.95/8.95 (11) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] 22.95/8.95 (12) CpxRNTS 22.95/8.95 (13) InliningProof [UPPER BOUND(ID), 2 ms] 22.95/8.95 (14) CpxRNTS 22.95/8.95 (15) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] 22.95/8.95 (16) CpxRNTS 22.95/8.95 (17) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] 22.95/8.95 (18) CpxRNTS 22.95/8.95 (19) ResultPropagationProof [UPPER BOUND(ID), 0 ms] 22.95/8.95 (20) CpxRNTS 22.95/8.95 (21) IntTrsBoundProof [UPPER BOUND(ID), 263 ms] 22.95/8.95 (22) CpxRNTS 22.95/8.95 (23) IntTrsBoundProof [UPPER BOUND(ID), 128 ms] 22.95/8.95 (24) CpxRNTS 22.95/8.95 (25) ResultPropagationProof [UPPER BOUND(ID), 0 ms] 22.95/8.95 (26) CpxRNTS 22.95/8.95 (27) IntTrsBoundProof [UPPER BOUND(ID), 341 ms] 22.95/8.95 (28) CpxRNTS 22.95/8.95 (29) IntTrsBoundProof [UPPER BOUND(ID), 73 ms] 22.95/8.95 (30) CpxRNTS 22.95/8.95 (31) ResultPropagationProof [UPPER BOUND(ID), 0 ms] 22.95/8.95 (32) CpxRNTS 22.95/8.95 (33) IntTrsBoundProof [UPPER BOUND(ID), 291 ms] 22.95/8.95 (34) CpxRNTS 22.95/8.95 (35) IntTrsBoundProof [UPPER BOUND(ID), 115 ms] 22.95/8.95 (36) CpxRNTS 22.95/8.95 (37) ResultPropagationProof [UPPER BOUND(ID), 0 ms] 22.95/8.95 (38) CpxRNTS 22.95/8.95 (39) IntTrsBoundProof [UPPER BOUND(ID), 467 ms] 22.95/8.95 (40) CpxRNTS 22.95/8.95 (41) IntTrsBoundProof [UPPER BOUND(ID), 249 ms] 22.95/8.95 (42) CpxRNTS 22.95/8.95 (43) FinalProof [FINISHED, 0 ms] 22.95/8.95 (44) BOUNDS(1, n^1) 22.95/8.95 (45) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 22.95/8.95 (46) TRS for Loop Detection 22.95/8.95 (47) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 22.95/8.95 (48) BEST 22.95/8.95 (49) proven lower bound 22.95/8.95 (50) LowerBoundPropagationProof [FINISHED, 0 ms] 22.95/8.95 (51) BOUNDS(n^1, INF) 22.95/8.95 (52) TRS for Loop Detection 22.95/8.95 22.95/8.95 22.95/8.95 ---------------------------------------- 22.95/8.95 22.95/8.95 (0) 22.95/8.95 Obligation: 22.95/8.95 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 22.95/8.95 22.95/8.95 22.95/8.95 The TRS R consists of the following rules: 22.95/8.95 22.95/8.95 minus(0, Y) -> 0 22.95/8.95 minus(s(X), s(Y)) -> minus(X, Y) 22.95/8.95 geq(X, 0) -> true 22.95/8.95 geq(0, s(Y)) -> false 22.95/8.95 geq(s(X), s(Y)) -> geq(X, Y) 22.95/8.95 div(0, s(Y)) -> 0 22.95/8.95 div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0) 22.95/8.95 if(true, X, Y) -> X 22.95/8.95 if(false, X, Y) -> Y 22.95/8.95 22.95/8.95 S is empty. 22.95/8.95 Rewrite Strategy: FULL 22.95/8.95 ---------------------------------------- 22.95/8.95 22.95/8.95 (1) RcToIrcProof (BOTH BOUNDS(ID, ID)) 22.95/8.95 Converted rc-obligation to irc-obligation. 22.95/8.95 22.95/8.95 The duplicating contexts are: 22.95/8.95 div(s([]), s(Y)) 22.95/8.95 div(s(X), s([])) 22.95/8.95 22.95/8.95 22.95/8.95 The defined contexts are: 22.95/8.95 if([], s(x1), 0) 22.95/8.95 if(x0, s([]), 0) 22.95/8.95 div([], s(x1)) 22.95/8.95 geq([], x1) 22.95/8.95 minus([], x1) 22.95/8.95 22.95/8.95 22.95/8.95 [] just represents basic- or constructor-terms in the following defined contexts: 22.95/8.95 if([], s(x1), 0) 22.95/8.95 div([], s(x1)) 22.95/8.95 22.95/8.95 22.95/8.95 As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc. 22.95/8.95 ---------------------------------------- 22.95/8.95 22.95/8.95 (2) 22.95/8.95 Obligation: 22.95/8.95 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). 22.95/8.95 22.95/8.95 22.95/8.95 The TRS R consists of the following rules: 22.95/8.95 22.95/8.95 minus(0, Y) -> 0 22.95/8.95 minus(s(X), s(Y)) -> minus(X, Y) 22.95/8.95 geq(X, 0) -> true 22.95/8.95 geq(0, s(Y)) -> false 22.95/8.95 geq(s(X), s(Y)) -> geq(X, Y) 22.95/8.95 div(0, s(Y)) -> 0 22.95/8.95 div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0) 22.95/8.95 if(true, X, Y) -> X 22.95/8.95 if(false, X, Y) -> Y 22.95/8.95 22.95/8.95 S is empty. 22.95/8.95 Rewrite Strategy: INNERMOST 22.95/8.95 ---------------------------------------- 22.95/8.95 22.95/8.95 (3) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) 22.95/8.95 Transformed relative TRS to weighted TRS 22.95/8.95 ---------------------------------------- 22.95/8.95 22.95/8.95 (4) 22.95/8.95 Obligation: 22.95/8.95 The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). 22.95/8.95 22.95/8.95 22.95/8.95 The TRS R consists of the following rules: 22.95/8.95 22.95/8.95 minus(0, Y) -> 0 [1] 22.95/8.95 minus(s(X), s(Y)) -> minus(X, Y) [1] 22.95/8.95 geq(X, 0) -> true [1] 22.95/8.95 geq(0, s(Y)) -> false [1] 22.95/8.95 geq(s(X), s(Y)) -> geq(X, Y) [1] 22.95/8.95 div(0, s(Y)) -> 0 [1] 22.95/8.95 div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0) [1] 22.95/8.95 if(true, X, Y) -> X [1] 22.95/8.95 if(false, X, Y) -> Y [1] 22.95/8.95 22.95/8.95 Rewrite Strategy: INNERMOST 22.95/8.95 ---------------------------------------- 22.95/8.95 22.95/8.95 (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 22.95/8.95 Infered types. 22.95/8.95 ---------------------------------------- 22.95/8.95 22.95/8.95 (6) 22.95/8.95 Obligation: 22.95/8.95 Runtime Complexity Weighted TRS with Types. 22.95/8.95 The TRS R consists of the following rules: 22.95/8.95 22.95/8.95 minus(0, Y) -> 0 [1] 22.95/8.95 minus(s(X), s(Y)) -> minus(X, Y) [1] 22.95/8.95 geq(X, 0) -> true [1] 22.95/8.95 geq(0, s(Y)) -> false [1] 22.95/8.95 geq(s(X), s(Y)) -> geq(X, Y) [1] 22.95/8.95 div(0, s(Y)) -> 0 [1] 22.95/8.95 div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0) [1] 22.95/8.95 if(true, X, Y) -> X [1] 22.95/8.95 if(false, X, Y) -> Y [1] 22.95/8.95 22.95/8.95 The TRS has the following type information: 22.95/8.95 minus :: 0:s -> 0:s -> 0:s 22.95/8.95 0 :: 0:s 22.95/8.95 s :: 0:s -> 0:s 22.95/8.95 geq :: 0:s -> 0:s -> true:false 22.95/8.95 true :: true:false 22.95/8.95 false :: true:false 22.95/8.95 div :: 0:s -> 0:s -> 0:s 22.95/8.95 if :: true:false -> 0:s -> 0:s -> 0:s 22.95/8.95 22.95/8.95 Rewrite Strategy: INNERMOST 22.95/8.95 ---------------------------------------- 22.95/8.95 22.95/8.95 (7) CompletionProof (UPPER BOUND(ID)) 22.95/8.95 The transformation into a RNTS is sound, since: 22.95/8.95 22.95/8.95 (a) The obligation is a constructor system where every type has a constant constructor, 22.95/8.95 22.95/8.95 (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: 22.95/8.95 none 22.95/8.95 22.95/8.95 (c) The following functions are completely defined: 22.95/8.95 22.95/8.95 geq_2 22.95/8.95 div_2 22.95/8.95 minus_2 22.95/8.95 if_3 22.95/8.95 22.95/8.95 Due to the following rules being added: 22.95/8.95 22.95/8.95 div(v0, v1) -> 0 [0] 22.95/8.95 minus(v0, v1) -> 0 [0] 22.95/8.95 22.95/8.95 And the following fresh constants: none 22.95/8.95 22.95/8.95 ---------------------------------------- 22.95/8.95 22.95/8.95 (8) 22.95/8.95 Obligation: 22.95/8.95 Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: 22.95/8.95 22.95/8.95 Runtime Complexity Weighted TRS with Types. 22.95/8.95 The TRS R consists of the following rules: 22.95/8.95 22.95/8.95 minus(0, Y) -> 0 [1] 22.95/8.95 minus(s(X), s(Y)) -> minus(X, Y) [1] 22.95/8.95 geq(X, 0) -> true [1] 22.95/8.95 geq(0, s(Y)) -> false [1] 22.95/8.95 geq(s(X), s(Y)) -> geq(X, Y) [1] 22.95/8.95 div(0, s(Y)) -> 0 [1] 22.95/8.95 div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0) [1] 22.95/8.95 if(true, X, Y) -> X [1] 22.95/8.95 if(false, X, Y) -> Y [1] 22.95/8.95 div(v0, v1) -> 0 [0] 22.95/8.95 minus(v0, v1) -> 0 [0] 22.95/8.95 22.95/8.95 The TRS has the following type information: 22.95/8.95 minus :: 0:s -> 0:s -> 0:s 22.95/8.95 0 :: 0:s 22.95/8.95 s :: 0:s -> 0:s 22.95/8.95 geq :: 0:s -> 0:s -> true:false 22.95/8.95 true :: true:false 22.95/8.95 false :: true:false 22.95/8.95 div :: 0:s -> 0:s -> 0:s 22.95/8.95 if :: true:false -> 0:s -> 0:s -> 0:s 22.95/8.95 22.95/8.95 Rewrite Strategy: INNERMOST 22.95/8.95 ---------------------------------------- 22.95/8.95 22.95/8.95 (9) NarrowingProof (BOTH BOUNDS(ID, ID)) 22.95/8.95 Narrowed the inner basic terms of all right-hand sides by a single narrowing step. 22.95/8.95 ---------------------------------------- 22.95/8.95 22.95/8.95 (10) 22.95/8.95 Obligation: 22.95/8.95 Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: 22.95/8.95 22.95/8.95 Runtime Complexity Weighted TRS with Types. 22.95/8.95 The TRS R consists of the following rules: 22.95/8.95 22.95/8.95 minus(0, Y) -> 0 [1] 22.95/8.95 minus(s(X), s(Y)) -> minus(X, Y) [1] 22.95/8.95 geq(X, 0) -> true [1] 22.95/8.95 geq(0, s(Y)) -> false [1] 22.95/8.95 geq(s(X), s(Y)) -> geq(X, Y) [1] 22.95/8.95 div(0, s(Y)) -> 0 [1] 22.95/8.95 div(s(0), s(0)) -> if(true, s(div(0, s(0))), 0) [3] 22.95/8.95 div(s(X), s(0)) -> if(true, s(div(0, s(0))), 0) [2] 22.95/8.95 div(s(0), s(s(Y'))) -> if(false, s(div(0, s(s(Y')))), 0) [3] 22.95/8.95 div(s(0), s(s(Y'))) -> if(false, s(div(0, s(s(Y')))), 0) [2] 22.95/8.95 div(s(s(X')), s(s(Y''))) -> if(geq(X', Y''), s(div(minus(X', Y''), s(s(Y'')))), 0) [3] 22.95/8.95 div(s(s(X')), s(s(Y''))) -> if(geq(X', Y''), s(div(0, s(s(Y'')))), 0) [2] 22.95/8.95 if(true, X, Y) -> X [1] 22.95/8.95 if(false, X, Y) -> Y [1] 22.95/8.95 div(v0, v1) -> 0 [0] 22.95/8.95 minus(v0, v1) -> 0 [0] 22.95/8.95 22.95/8.95 The TRS has the following type information: 22.95/8.95 minus :: 0:s -> 0:s -> 0:s 22.95/8.95 0 :: 0:s 22.95/8.95 s :: 0:s -> 0:s 22.95/8.95 geq :: 0:s -> 0:s -> true:false 22.95/8.95 true :: true:false 22.95/8.95 false :: true:false 22.95/8.95 div :: 0:s -> 0:s -> 0:s 22.95/8.95 if :: true:false -> 0:s -> 0:s -> 0:s 22.95/8.95 22.95/8.95 Rewrite Strategy: INNERMOST 22.95/8.95 ---------------------------------------- 22.95/8.95 22.95/8.95 (11) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) 22.95/8.95 Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. 22.95/8.95 The constant constructors are abstracted as follows: 22.95/8.95 22.95/8.95 0 => 0 22.95/8.95 true => 1 22.95/8.95 false => 0 22.95/8.95 22.95/8.95 ---------------------------------------- 22.95/8.95 22.95/8.95 (12) 22.95/8.95 Obligation: 22.95/8.95 Complexity RNTS consisting of the following rules: 22.95/8.95 22.95/8.95 div(z, z') -{ 3 }-> if(geq(X', Y''), 1 + div(minus(X', Y''), 1 + (1 + Y'')), 0) :|: Y'' >= 0, z' = 1 + (1 + Y''), X' >= 0, z = 1 + (1 + X') 22.95/8.95 div(z, z') -{ 2 }-> if(geq(X', Y''), 1 + div(0, 1 + (1 + Y'')), 0) :|: Y'' >= 0, z' = 1 + (1 + Y''), X' >= 0, z = 1 + (1 + X') 22.95/8.95 div(z, z') -{ 3 }-> if(1, 1 + div(0, 1 + 0), 0) :|: z = 1 + 0, z' = 1 + 0 22.95/8.95 div(z, z') -{ 2 }-> if(1, 1 + div(0, 1 + 0), 0) :|: z = 1 + X, X >= 0, z' = 1 + 0 22.95/8.95 div(z, z') -{ 3 }-> if(0, 1 + div(0, 1 + (1 + Y')), 0) :|: z' = 1 + (1 + Y'), Y' >= 0, z = 1 + 0 22.95/8.95 div(z, z') -{ 2 }-> if(0, 1 + div(0, 1 + (1 + Y')), 0) :|: z' = 1 + (1 + Y'), Y' >= 0, z = 1 + 0 22.95/8.95 div(z, z') -{ 1 }-> 0 :|: Y >= 0, z' = 1 + Y, z = 0 22.95/8.95 div(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 22.95/8.95 geq(z, z') -{ 1 }-> geq(X, Y) :|: z = 1 + X, Y >= 0, z' = 1 + Y, X >= 0 22.95/8.95 geq(z, z') -{ 1 }-> 1 :|: X >= 0, z = X, z' = 0 22.95/8.95 geq(z, z') -{ 1 }-> 0 :|: Y >= 0, z' = 1 + Y, z = 0 22.95/8.95 if(z, z', z'') -{ 1 }-> X :|: z' = X, Y >= 0, z = 1, z'' = Y, X >= 0 22.95/8.95 if(z, z', z'') -{ 1 }-> Y :|: z' = X, Y >= 0, z'' = Y, X >= 0, z = 0 22.95/8.95 minus(z, z') -{ 1 }-> minus(X, Y) :|: z = 1 + X, Y >= 0, z' = 1 + Y, X >= 0 22.95/8.95 minus(z, z') -{ 1 }-> 0 :|: z' = Y, Y >= 0, z = 0 22.95/8.95 minus(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 22.95/8.95 22.95/8.95 22.95/8.95 ---------------------------------------- 22.95/8.95 22.95/8.95 (13) InliningProof (UPPER BOUND(ID)) 22.95/8.95 Inlined the following terminating rules on right-hand sides where appropriate: 22.95/8.95 22.95/8.95 if(z, z', z'') -{ 1 }-> X :|: z' = X, Y >= 0, z = 1, z'' = Y, X >= 0 22.95/8.95 if(z, z', z'') -{ 1 }-> Y :|: z' = X, Y >= 0, z'' = Y, X >= 0, z = 0 22.95/8.95 22.95/8.95 ---------------------------------------- 22.95/8.95 22.95/8.95 (14) 22.95/8.95 Obligation: 22.95/8.95 Complexity RNTS consisting of the following rules: 22.95/8.95 22.95/8.95 div(z, z') -{ 3 }-> if(geq(X', Y''), 1 + div(minus(X', Y''), 1 + (1 + Y'')), 0) :|: Y'' >= 0, z' = 1 + (1 + Y''), X' >= 0, z = 1 + (1 + X') 22.95/8.95 div(z, z') -{ 2 }-> if(geq(X', Y''), 1 + div(0, 1 + (1 + Y'')), 0) :|: Y'' >= 0, z' = 1 + (1 + Y''), X' >= 0, z = 1 + (1 + X') 22.95/8.95 div(z, z') -{ 3 }-> if(1, 1 + div(0, 1 + 0), 0) :|: z = 1 + 0, z' = 1 + 0 22.95/8.95 div(z, z') -{ 2 }-> if(1, 1 + div(0, 1 + 0), 0) :|: z = 1 + X, X >= 0, z' = 1 + 0 22.95/8.95 div(z, z') -{ 3 }-> if(0, 1 + div(0, 1 + (1 + Y')), 0) :|: z' = 1 + (1 + Y'), Y' >= 0, z = 1 + 0 22.95/8.95 div(z, z') -{ 2 }-> if(0, 1 + div(0, 1 + (1 + Y')), 0) :|: z' = 1 + (1 + Y'), Y' >= 0, z = 1 + 0 22.95/8.95 div(z, z') -{ 1 }-> 0 :|: Y >= 0, z' = 1 + Y, z = 0 22.95/8.95 div(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 22.95/8.95 geq(z, z') -{ 1 }-> geq(X, Y) :|: z = 1 + X, Y >= 0, z' = 1 + Y, X >= 0 22.95/8.95 geq(z, z') -{ 1 }-> 1 :|: X >= 0, z = X, z' = 0 22.95/8.95 geq(z, z') -{ 1 }-> 0 :|: Y >= 0, z' = 1 + Y, z = 0 22.95/8.95 if(z, z', z'') -{ 1 }-> X :|: z' = X, Y >= 0, z = 1, z'' = Y, X >= 0 22.95/8.95 if(z, z', z'') -{ 1 }-> Y :|: z' = X, Y >= 0, z'' = Y, X >= 0, z = 0 22.95/8.95 minus(z, z') -{ 1 }-> minus(X, Y) :|: z = 1 + X, Y >= 0, z' = 1 + Y, X >= 0 22.95/8.95 minus(z, z') -{ 1 }-> 0 :|: z' = Y, Y >= 0, z = 0 22.95/8.95 minus(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 22.95/8.95 22.95/8.95 22.95/8.95 ---------------------------------------- 22.95/8.95 22.95/8.95 (15) SimplificationProof (BOTH BOUNDS(ID, ID)) 22.95/8.95 Simplified the RNTS by moving equalities from the constraints into the right-hand sides. 22.95/8.95 ---------------------------------------- 22.95/8.95 22.95/8.95 (16) 22.95/8.95 Obligation: 22.95/8.95 Complexity RNTS consisting of the following rules: 22.95/8.95 22.95/8.95 div(z, z') -{ 3 }-> if(geq(z - 2, z' - 2), 1 + div(minus(z - 2, z' - 2), 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z - 2 >= 0 22.95/8.95 div(z, z') -{ 2 }-> if(geq(z - 2, z' - 2), 1 + div(0, 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z - 2 >= 0 22.95/8.95 div(z, z') -{ 3 }-> if(1, 1 + div(0, 1 + 0), 0) :|: z = 1 + 0, z' = 1 + 0 22.95/8.95 div(z, z') -{ 2 }-> if(1, 1 + div(0, 1 + 0), 0) :|: z - 1 >= 0, z' = 1 + 0 22.95/8.95 div(z, z') -{ 3 }-> if(0, 1 + div(0, 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z = 1 + 0 22.95/8.95 div(z, z') -{ 2 }-> if(0, 1 + div(0, 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z = 1 + 0 22.95/8.95 div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 22.95/8.95 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 22.95/8.95 geq(z, z') -{ 1 }-> geq(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 22.95/8.95 geq(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 0 22.95/8.95 geq(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 22.95/8.95 if(z, z', z'') -{ 1 }-> z' :|: z'' >= 0, z = 1, z' >= 0 22.95/8.95 if(z, z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' >= 0, z = 0 22.95/8.95 minus(z, z') -{ 1 }-> minus(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 22.95/8.95 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 22.95/8.95 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 22.95/8.95 22.95/8.95 22.95/8.95 ---------------------------------------- 22.95/8.95 22.95/8.95 (17) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) 22.95/8.95 Found the following analysis order by SCC decomposition: 22.95/8.95 22.95/8.95 { minus } 22.95/8.95 { if } 22.95/8.95 { geq } 22.95/8.95 { div } 22.95/8.95 22.95/8.95 ---------------------------------------- 22.95/8.95 22.95/8.95 (18) 22.95/8.95 Obligation: 22.95/8.95 Complexity RNTS consisting of the following rules: 22.95/8.95 22.95/8.95 div(z, z') -{ 3 }-> if(geq(z - 2, z' - 2), 1 + div(minus(z - 2, z' - 2), 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z - 2 >= 0 22.95/8.95 div(z, z') -{ 2 }-> if(geq(z - 2, z' - 2), 1 + div(0, 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z - 2 >= 0 22.95/8.95 div(z, z') -{ 3 }-> if(1, 1 + div(0, 1 + 0), 0) :|: z = 1 + 0, z' = 1 + 0 22.95/8.95 div(z, z') -{ 2 }-> if(1, 1 + div(0, 1 + 0), 0) :|: z - 1 >= 0, z' = 1 + 0 22.95/8.95 div(z, z') -{ 3 }-> if(0, 1 + div(0, 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z = 1 + 0 22.95/8.95 div(z, z') -{ 2 }-> if(0, 1 + div(0, 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z = 1 + 0 22.95/8.95 div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 22.95/8.95 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 22.95/8.95 geq(z, z') -{ 1 }-> geq(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 22.95/8.95 geq(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 0 22.95/8.95 geq(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 22.95/8.95 if(z, z', z'') -{ 1 }-> z' :|: z'' >= 0, z = 1, z' >= 0 22.95/8.95 if(z, z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' >= 0, z = 0 22.95/8.95 minus(z, z') -{ 1 }-> minus(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 22.95/8.95 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 22.95/8.95 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 22.95/8.95 22.95/8.95 Function symbols to be analyzed: {minus}, {if}, {geq}, {div} 22.95/8.95 22.95/8.95 ---------------------------------------- 22.95/8.95 22.95/8.95 (19) ResultPropagationProof (UPPER BOUND(ID)) 22.95/8.95 Applied inner abstraction using the recently inferred runtime/size bounds where possible. 22.95/8.95 ---------------------------------------- 22.95/8.95 22.95/8.95 (20) 22.95/8.95 Obligation: 22.95/8.95 Complexity RNTS consisting of the following rules: 22.95/8.95 22.95/8.95 div(z, z') -{ 3 }-> if(geq(z - 2, z' - 2), 1 + div(minus(z - 2, z' - 2), 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z - 2 >= 0 22.95/8.95 div(z, z') -{ 2 }-> if(geq(z - 2, z' - 2), 1 + div(0, 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z - 2 >= 0 22.95/8.95 div(z, z') -{ 3 }-> if(1, 1 + div(0, 1 + 0), 0) :|: z = 1 + 0, z' = 1 + 0 22.95/8.95 div(z, z') -{ 2 }-> if(1, 1 + div(0, 1 + 0), 0) :|: z - 1 >= 0, z' = 1 + 0 22.95/8.95 div(z, z') -{ 3 }-> if(0, 1 + div(0, 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z = 1 + 0 22.95/8.95 div(z, z') -{ 2 }-> if(0, 1 + div(0, 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z = 1 + 0 22.95/8.95 div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 22.95/8.95 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 22.95/8.95 geq(z, z') -{ 1 }-> geq(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 22.95/8.95 geq(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 0 22.95/8.95 geq(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 22.95/8.95 if(z, z', z'') -{ 1 }-> z' :|: z'' >= 0, z = 1, z' >= 0 22.95/8.95 if(z, z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' >= 0, z = 0 22.95/8.95 minus(z, z') -{ 1 }-> minus(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 22.95/8.95 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 22.95/8.95 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 22.95/8.95 22.95/8.95 Function symbols to be analyzed: {minus}, {if}, {geq}, {div} 22.95/8.95 22.95/8.95 ---------------------------------------- 22.95/8.95 22.95/8.95 (21) IntTrsBoundProof (UPPER BOUND(ID)) 22.95/8.95 22.95/8.95 Computed SIZE bound using CoFloCo for: minus 22.95/8.95 after applying outer abstraction to obtain an ITS, 22.95/8.95 resulting in: O(1) with polynomial bound: 0 22.95/8.95 22.95/8.95 ---------------------------------------- 22.95/8.95 22.95/8.95 (22) 22.95/8.95 Obligation: 22.95/8.95 Complexity RNTS consisting of the following rules: 22.95/8.95 22.95/8.95 div(z, z') -{ 3 }-> if(geq(z - 2, z' - 2), 1 + div(minus(z - 2, z' - 2), 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z - 2 >= 0 22.95/8.95 div(z, z') -{ 2 }-> if(geq(z - 2, z' - 2), 1 + div(0, 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z - 2 >= 0 22.95/8.95 div(z, z') -{ 3 }-> if(1, 1 + div(0, 1 + 0), 0) :|: z = 1 + 0, z' = 1 + 0 22.95/8.95 div(z, z') -{ 2 }-> if(1, 1 + div(0, 1 + 0), 0) :|: z - 1 >= 0, z' = 1 + 0 22.95/8.95 div(z, z') -{ 3 }-> if(0, 1 + div(0, 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z = 1 + 0 22.95/8.95 div(z, z') -{ 2 }-> if(0, 1 + div(0, 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z = 1 + 0 22.95/8.95 div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 22.95/8.95 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 22.95/8.95 geq(z, z') -{ 1 }-> geq(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 22.95/8.95 geq(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 0 22.95/8.95 geq(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 22.95/8.95 if(z, z', z'') -{ 1 }-> z' :|: z'' >= 0, z = 1, z' >= 0 22.95/8.95 if(z, z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' >= 0, z = 0 22.95/8.95 minus(z, z') -{ 1 }-> minus(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 22.95/8.95 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 22.95/8.95 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 22.95/8.95 22.95/8.95 Function symbols to be analyzed: {minus}, {if}, {geq}, {div} 22.95/8.95 Previous analysis results are: 22.95/8.95 minus: runtime: ?, size: O(1) [0] 22.95/8.95 22.95/8.95 ---------------------------------------- 22.95/8.95 22.95/8.95 (23) IntTrsBoundProof (UPPER BOUND(ID)) 22.95/8.95 22.95/8.95 Computed RUNTIME bound using KoAT for: minus 22.95/8.95 after applying outer abstraction to obtain an ITS, 22.95/8.95 resulting in: O(n^1) with polynomial bound: 1 + z' 22.95/8.95 22.95/8.95 ---------------------------------------- 22.95/8.95 22.95/8.95 (24) 22.95/8.95 Obligation: 22.95/8.95 Complexity RNTS consisting of the following rules: 22.95/8.95 22.95/8.95 div(z, z') -{ 3 }-> if(geq(z - 2, z' - 2), 1 + div(minus(z - 2, z' - 2), 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z - 2 >= 0 22.95/8.95 div(z, z') -{ 2 }-> if(geq(z - 2, z' - 2), 1 + div(0, 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z - 2 >= 0 22.95/8.95 div(z, z') -{ 3 }-> if(1, 1 + div(0, 1 + 0), 0) :|: z = 1 + 0, z' = 1 + 0 22.95/8.95 div(z, z') -{ 2 }-> if(1, 1 + div(0, 1 + 0), 0) :|: z - 1 >= 0, z' = 1 + 0 22.95/8.95 div(z, z') -{ 3 }-> if(0, 1 + div(0, 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z = 1 + 0 22.95/8.95 div(z, z') -{ 2 }-> if(0, 1 + div(0, 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z = 1 + 0 22.95/8.95 div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 22.95/8.95 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 22.95/8.95 geq(z, z') -{ 1 }-> geq(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 22.95/8.95 geq(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 0 22.95/8.95 geq(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 22.95/8.95 if(z, z', z'') -{ 1 }-> z' :|: z'' >= 0, z = 1, z' >= 0 22.95/8.95 if(z, z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' >= 0, z = 0 22.95/8.95 minus(z, z') -{ 1 }-> minus(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 22.95/8.95 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 22.95/8.95 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 22.95/8.95 22.95/8.95 Function symbols to be analyzed: {if}, {geq}, {div} 22.95/8.95 Previous analysis results are: 22.95/8.95 minus: runtime: O(n^1) [1 + z'], size: O(1) [0] 22.95/8.95 22.95/8.95 ---------------------------------------- 22.95/8.95 22.95/8.95 (25) ResultPropagationProof (UPPER BOUND(ID)) 22.95/8.95 Applied inner abstraction using the recently inferred runtime/size bounds where possible. 22.95/8.95 ---------------------------------------- 22.95/8.95 22.95/8.95 (26) 22.95/8.95 Obligation: 22.95/8.95 Complexity RNTS consisting of the following rules: 22.95/8.95 22.95/8.95 div(z, z') -{ 2 + z' }-> if(geq(z - 2, z' - 2), 1 + div(s', 1 + (1 + (z' - 2))), 0) :|: s' >= 0, s' <= 0, z' - 2 >= 0, z - 2 >= 0 22.95/8.95 div(z, z') -{ 2 }-> if(geq(z - 2, z' - 2), 1 + div(0, 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z - 2 >= 0 22.95/8.95 div(z, z') -{ 3 }-> if(1, 1 + div(0, 1 + 0), 0) :|: z = 1 + 0, z' = 1 + 0 22.95/8.95 div(z, z') -{ 2 }-> if(1, 1 + div(0, 1 + 0), 0) :|: z - 1 >= 0, z' = 1 + 0 22.95/8.95 div(z, z') -{ 3 }-> if(0, 1 + div(0, 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z = 1 + 0 22.95/8.95 div(z, z') -{ 2 }-> if(0, 1 + div(0, 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z = 1 + 0 22.95/8.95 div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 22.95/8.95 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 22.95/8.95 geq(z, z') -{ 1 }-> geq(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 22.95/8.95 geq(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 0 22.95/8.95 geq(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 22.95/8.95 if(z, z', z'') -{ 1 }-> z' :|: z'' >= 0, z = 1, z' >= 0 22.95/8.95 if(z, z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' >= 0, z = 0 22.95/8.95 minus(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= 0, z' - 1 >= 0, z - 1 >= 0 22.95/8.95 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 22.95/8.95 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 22.95/8.95 22.95/8.95 Function symbols to be analyzed: {if}, {geq}, {div} 22.95/8.95 Previous analysis results are: 22.95/8.95 minus: runtime: O(n^1) [1 + z'], size: O(1) [0] 22.95/8.95 22.95/8.95 ---------------------------------------- 22.95/8.95 22.95/8.95 (27) IntTrsBoundProof (UPPER BOUND(ID)) 22.95/8.95 22.95/8.95 Computed SIZE bound using CoFloCo for: if 22.95/8.95 after applying outer abstraction to obtain an ITS, 22.95/8.95 resulting in: O(n^1) with polynomial bound: z' + z'' 22.95/8.95 22.95/8.95 ---------------------------------------- 22.95/8.95 22.95/8.95 (28) 22.95/8.95 Obligation: 22.95/8.95 Complexity RNTS consisting of the following rules: 22.95/8.95 22.95/8.95 div(z, z') -{ 2 + z' }-> if(geq(z - 2, z' - 2), 1 + div(s', 1 + (1 + (z' - 2))), 0) :|: s' >= 0, s' <= 0, z' - 2 >= 0, z - 2 >= 0 22.95/8.95 div(z, z') -{ 2 }-> if(geq(z - 2, z' - 2), 1 + div(0, 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z - 2 >= 0 22.95/8.95 div(z, z') -{ 3 }-> if(1, 1 + div(0, 1 + 0), 0) :|: z = 1 + 0, z' = 1 + 0 22.95/8.95 div(z, z') -{ 2 }-> if(1, 1 + div(0, 1 + 0), 0) :|: z - 1 >= 0, z' = 1 + 0 22.95/8.95 div(z, z') -{ 3 }-> if(0, 1 + div(0, 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z = 1 + 0 22.95/8.95 div(z, z') -{ 2 }-> if(0, 1 + div(0, 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z = 1 + 0 22.95/8.95 div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 22.95/8.95 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 22.95/8.95 geq(z, z') -{ 1 }-> geq(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 22.95/8.95 geq(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 0 22.95/8.95 geq(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 22.95/8.95 if(z, z', z'') -{ 1 }-> z' :|: z'' >= 0, z = 1, z' >= 0 22.95/8.95 if(z, z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' >= 0, z = 0 22.95/8.95 minus(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= 0, z' - 1 >= 0, z - 1 >= 0 22.95/8.95 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 22.95/8.95 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 22.95/8.95 22.95/8.95 Function symbols to be analyzed: {if}, {geq}, {div} 22.95/8.95 Previous analysis results are: 22.95/8.95 minus: runtime: O(n^1) [1 + z'], size: O(1) [0] 22.95/8.95 if: runtime: ?, size: O(n^1) [z' + z''] 22.95/8.95 22.95/8.95 ---------------------------------------- 22.95/8.95 22.95/8.95 (29) IntTrsBoundProof (UPPER BOUND(ID)) 22.95/8.95 22.95/8.95 Computed RUNTIME bound using CoFloCo for: if 22.95/8.95 after applying outer abstraction to obtain an ITS, 22.95/8.95 resulting in: O(1) with polynomial bound: 1 22.95/8.95 22.95/8.95 ---------------------------------------- 22.95/8.95 22.95/8.95 (30) 22.95/8.95 Obligation: 22.95/8.95 Complexity RNTS consisting of the following rules: 22.95/8.95 22.95/8.95 div(z, z') -{ 2 + z' }-> if(geq(z - 2, z' - 2), 1 + div(s', 1 + (1 + (z' - 2))), 0) :|: s' >= 0, s' <= 0, z' - 2 >= 0, z - 2 >= 0 22.95/8.96 div(z, z') -{ 2 }-> if(geq(z - 2, z' - 2), 1 + div(0, 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z - 2 >= 0 22.95/8.96 div(z, z') -{ 3 }-> if(1, 1 + div(0, 1 + 0), 0) :|: z = 1 + 0, z' = 1 + 0 22.95/8.96 div(z, z') -{ 2 }-> if(1, 1 + div(0, 1 + 0), 0) :|: z - 1 >= 0, z' = 1 + 0 22.95/8.96 div(z, z') -{ 3 }-> if(0, 1 + div(0, 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z = 1 + 0 22.95/8.96 div(z, z') -{ 2 }-> if(0, 1 + div(0, 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z = 1 + 0 22.95/8.96 div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 22.95/8.96 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 22.95/8.96 geq(z, z') -{ 1 }-> geq(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 22.95/8.96 geq(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 0 22.95/8.96 geq(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 22.95/8.96 if(z, z', z'') -{ 1 }-> z' :|: z'' >= 0, z = 1, z' >= 0 22.95/8.96 if(z, z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' >= 0, z = 0 22.95/8.96 minus(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= 0, z' - 1 >= 0, z - 1 >= 0 22.95/8.96 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 22.95/8.96 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 22.95/8.96 22.95/8.96 Function symbols to be analyzed: {geq}, {div} 22.95/8.96 Previous analysis results are: 22.95/8.96 minus: runtime: O(n^1) [1 + z'], size: O(1) [0] 22.95/8.96 if: runtime: O(1) [1], size: O(n^1) [z' + z''] 22.95/8.96 22.95/8.96 ---------------------------------------- 22.95/8.96 22.95/8.96 (31) ResultPropagationProof (UPPER BOUND(ID)) 22.95/8.96 Applied inner abstraction using the recently inferred runtime/size bounds where possible. 22.95/8.96 ---------------------------------------- 22.95/8.96 22.95/8.96 (32) 22.95/8.96 Obligation: 22.95/8.96 Complexity RNTS consisting of the following rules: 22.95/8.96 22.95/8.96 div(z, z') -{ 2 + z' }-> if(geq(z - 2, z' - 2), 1 + div(s', 1 + (1 + (z' - 2))), 0) :|: s' >= 0, s' <= 0, z' - 2 >= 0, z - 2 >= 0 22.95/8.96 div(z, z') -{ 2 }-> if(geq(z - 2, z' - 2), 1 + div(0, 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z - 2 >= 0 22.95/8.96 div(z, z') -{ 3 }-> if(1, 1 + div(0, 1 + 0), 0) :|: z = 1 + 0, z' = 1 + 0 22.95/8.96 div(z, z') -{ 2 }-> if(1, 1 + div(0, 1 + 0), 0) :|: z - 1 >= 0, z' = 1 + 0 22.95/8.96 div(z, z') -{ 3 }-> if(0, 1 + div(0, 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z = 1 + 0 22.95/8.96 div(z, z') -{ 2 }-> if(0, 1 + div(0, 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z = 1 + 0 22.95/8.96 div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 22.95/8.96 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 22.95/8.96 geq(z, z') -{ 1 }-> geq(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 22.95/8.96 geq(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 0 22.95/8.96 geq(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 22.95/8.96 if(z, z', z'') -{ 1 }-> z' :|: z'' >= 0, z = 1, z' >= 0 22.95/8.96 if(z, z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' >= 0, z = 0 22.95/8.96 minus(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= 0, z' - 1 >= 0, z - 1 >= 0 22.95/8.96 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 22.95/8.96 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 22.95/8.96 22.95/8.96 Function symbols to be analyzed: {geq}, {div} 22.95/8.96 Previous analysis results are: 22.95/8.96 minus: runtime: O(n^1) [1 + z'], size: O(1) [0] 22.95/8.96 if: runtime: O(1) [1], size: O(n^1) [z' + z''] 22.95/8.96 22.95/8.96 ---------------------------------------- 22.95/8.96 22.95/8.96 (33) IntTrsBoundProof (UPPER BOUND(ID)) 22.95/8.96 22.95/8.96 Computed SIZE bound using CoFloCo for: geq 22.95/8.96 after applying outer abstraction to obtain an ITS, 22.95/8.96 resulting in: O(1) with polynomial bound: 1 22.95/8.96 22.95/8.96 ---------------------------------------- 22.95/8.96 22.95/8.96 (34) 22.95/8.96 Obligation: 22.95/8.96 Complexity RNTS consisting of the following rules: 22.95/8.96 22.95/8.96 div(z, z') -{ 2 + z' }-> if(geq(z - 2, z' - 2), 1 + div(s', 1 + (1 + (z' - 2))), 0) :|: s' >= 0, s' <= 0, z' - 2 >= 0, z - 2 >= 0 22.95/8.96 div(z, z') -{ 2 }-> if(geq(z - 2, z' - 2), 1 + div(0, 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z - 2 >= 0 22.95/8.96 div(z, z') -{ 3 }-> if(1, 1 + div(0, 1 + 0), 0) :|: z = 1 + 0, z' = 1 + 0 22.95/8.96 div(z, z') -{ 2 }-> if(1, 1 + div(0, 1 + 0), 0) :|: z - 1 >= 0, z' = 1 + 0 22.95/8.96 div(z, z') -{ 3 }-> if(0, 1 + div(0, 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z = 1 + 0 22.95/8.96 div(z, z') -{ 2 }-> if(0, 1 + div(0, 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z = 1 + 0 22.95/8.96 div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 22.95/8.96 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 22.95/8.96 geq(z, z') -{ 1 }-> geq(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 22.95/8.96 geq(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 0 22.95/8.96 geq(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 22.95/8.96 if(z, z', z'') -{ 1 }-> z' :|: z'' >= 0, z = 1, z' >= 0 22.95/8.96 if(z, z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' >= 0, z = 0 22.95/8.96 minus(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= 0, z' - 1 >= 0, z - 1 >= 0 22.95/8.96 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 22.95/8.96 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 22.95/8.96 22.95/8.96 Function symbols to be analyzed: {geq}, {div} 22.95/8.96 Previous analysis results are: 22.95/8.96 minus: runtime: O(n^1) [1 + z'], size: O(1) [0] 22.95/8.96 if: runtime: O(1) [1], size: O(n^1) [z' + z''] 22.95/8.96 geq: runtime: ?, size: O(1) [1] 22.95/8.96 22.95/8.96 ---------------------------------------- 22.95/8.96 22.95/8.96 (35) IntTrsBoundProof (UPPER BOUND(ID)) 22.95/8.96 22.95/8.96 Computed RUNTIME bound using KoAT for: geq 22.95/8.96 after applying outer abstraction to obtain an ITS, 22.95/8.96 resulting in: O(n^1) with polynomial bound: 2 + z' 22.95/8.96 22.95/8.96 ---------------------------------------- 22.95/8.96 22.95/8.96 (36) 22.95/8.96 Obligation: 22.95/8.96 Complexity RNTS consisting of the following rules: 22.95/8.96 22.95/8.96 div(z, z') -{ 2 + z' }-> if(geq(z - 2, z' - 2), 1 + div(s', 1 + (1 + (z' - 2))), 0) :|: s' >= 0, s' <= 0, z' - 2 >= 0, z - 2 >= 0 22.95/8.96 div(z, z') -{ 2 }-> if(geq(z - 2, z' - 2), 1 + div(0, 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z - 2 >= 0 22.95/8.96 div(z, z') -{ 3 }-> if(1, 1 + div(0, 1 + 0), 0) :|: z = 1 + 0, z' = 1 + 0 22.95/8.96 div(z, z') -{ 2 }-> if(1, 1 + div(0, 1 + 0), 0) :|: z - 1 >= 0, z' = 1 + 0 22.95/8.96 div(z, z') -{ 3 }-> if(0, 1 + div(0, 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z = 1 + 0 22.95/8.96 div(z, z') -{ 2 }-> if(0, 1 + div(0, 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z = 1 + 0 22.95/8.96 div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 22.95/8.96 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 22.95/8.96 geq(z, z') -{ 1 }-> geq(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 22.95/8.96 geq(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 0 22.95/8.96 geq(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 22.95/8.96 if(z, z', z'') -{ 1 }-> z' :|: z'' >= 0, z = 1, z' >= 0 22.95/8.96 if(z, z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' >= 0, z = 0 22.95/8.96 minus(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= 0, z' - 1 >= 0, z - 1 >= 0 22.95/8.96 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 22.95/8.96 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 22.95/8.96 22.95/8.96 Function symbols to be analyzed: {div} 22.95/8.96 Previous analysis results are: 22.95/8.96 minus: runtime: O(n^1) [1 + z'], size: O(1) [0] 22.95/8.96 if: runtime: O(1) [1], size: O(n^1) [z' + z''] 22.95/8.96 geq: runtime: O(n^1) [2 + z'], size: O(1) [1] 22.95/8.96 22.95/8.96 ---------------------------------------- 22.95/8.96 22.95/8.96 (37) ResultPropagationProof (UPPER BOUND(ID)) 22.95/8.96 Applied inner abstraction using the recently inferred runtime/size bounds where possible. 22.95/8.96 ---------------------------------------- 22.95/8.96 22.95/8.96 (38) 22.95/8.96 Obligation: 22.95/8.96 Complexity RNTS consisting of the following rules: 22.95/8.96 22.95/8.96 div(z, z') -{ 2 + 2*z' }-> if(s1, 1 + div(s', 1 + (1 + (z' - 2))), 0) :|: s1 >= 0, s1 <= 1, s' >= 0, s' <= 0, z' - 2 >= 0, z - 2 >= 0 22.95/8.96 div(z, z') -{ 2 + z' }-> if(s2, 1 + div(0, 1 + (1 + (z' - 2))), 0) :|: s2 >= 0, s2 <= 1, z' - 2 >= 0, z - 2 >= 0 22.95/8.96 div(z, z') -{ 3 }-> if(1, 1 + div(0, 1 + 0), 0) :|: z = 1 + 0, z' = 1 + 0 22.95/8.96 div(z, z') -{ 2 }-> if(1, 1 + div(0, 1 + 0), 0) :|: z - 1 >= 0, z' = 1 + 0 22.95/8.96 div(z, z') -{ 3 }-> if(0, 1 + div(0, 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z = 1 + 0 22.95/8.96 div(z, z') -{ 2 }-> if(0, 1 + div(0, 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z = 1 + 0 22.95/8.96 div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 22.95/8.96 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 22.95/8.96 geq(z, z') -{ 2 + z' }-> s'' :|: s'' >= 0, s'' <= 1, z' - 1 >= 0, z - 1 >= 0 22.95/8.96 geq(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 0 22.95/8.96 geq(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 22.95/8.96 if(z, z', z'') -{ 1 }-> z' :|: z'' >= 0, z = 1, z' >= 0 22.95/8.96 if(z, z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' >= 0, z = 0 22.95/8.96 minus(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= 0, z' - 1 >= 0, z - 1 >= 0 22.95/8.96 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 22.95/8.96 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 22.95/8.96 22.95/8.96 Function symbols to be analyzed: {div} 22.95/8.96 Previous analysis results are: 22.95/8.96 minus: runtime: O(n^1) [1 + z'], size: O(1) [0] 22.95/8.96 if: runtime: O(1) [1], size: O(n^1) [z' + z''] 22.95/8.96 geq: runtime: O(n^1) [2 + z'], size: O(1) [1] 22.95/8.96 22.95/8.96 ---------------------------------------- 22.95/8.96 22.95/8.96 (39) IntTrsBoundProof (UPPER BOUND(ID)) 22.95/8.96 22.95/8.96 Computed SIZE bound using CoFloCo for: div 22.95/8.96 after applying outer abstraction to obtain an ITS, 22.95/8.96 resulting in: O(1) with polynomial bound: 1 22.95/8.96 22.95/8.96 ---------------------------------------- 22.95/8.96 22.95/8.96 (40) 22.95/8.96 Obligation: 22.95/8.96 Complexity RNTS consisting of the following rules: 22.95/8.96 22.95/8.96 div(z, z') -{ 2 + 2*z' }-> if(s1, 1 + div(s', 1 + (1 + (z' - 2))), 0) :|: s1 >= 0, s1 <= 1, s' >= 0, s' <= 0, z' - 2 >= 0, z - 2 >= 0 22.95/8.96 div(z, z') -{ 2 + z' }-> if(s2, 1 + div(0, 1 + (1 + (z' - 2))), 0) :|: s2 >= 0, s2 <= 1, z' - 2 >= 0, z - 2 >= 0 22.95/8.96 div(z, z') -{ 3 }-> if(1, 1 + div(0, 1 + 0), 0) :|: z = 1 + 0, z' = 1 + 0 22.95/8.96 div(z, z') -{ 2 }-> if(1, 1 + div(0, 1 + 0), 0) :|: z - 1 >= 0, z' = 1 + 0 22.95/8.96 div(z, z') -{ 3 }-> if(0, 1 + div(0, 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z = 1 + 0 22.95/8.96 div(z, z') -{ 2 }-> if(0, 1 + div(0, 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z = 1 + 0 22.95/8.96 div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 22.95/8.96 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 22.95/8.96 geq(z, z') -{ 2 + z' }-> s'' :|: s'' >= 0, s'' <= 1, z' - 1 >= 0, z - 1 >= 0 22.95/8.96 geq(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 0 22.95/8.96 geq(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 22.95/8.96 if(z, z', z'') -{ 1 }-> z' :|: z'' >= 0, z = 1, z' >= 0 22.95/8.96 if(z, z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' >= 0, z = 0 22.95/8.96 minus(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= 0, z' - 1 >= 0, z - 1 >= 0 22.95/8.96 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 22.95/8.96 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 22.95/8.96 22.95/8.96 Function symbols to be analyzed: {div} 22.95/8.96 Previous analysis results are: 22.95/8.96 minus: runtime: O(n^1) [1 + z'], size: O(1) [0] 22.95/8.96 if: runtime: O(1) [1], size: O(n^1) [z' + z''] 22.95/8.96 geq: runtime: O(n^1) [2 + z'], size: O(1) [1] 22.95/8.96 div: runtime: ?, size: O(1) [1] 22.95/8.96 22.95/8.96 ---------------------------------------- 22.95/8.96 22.95/8.96 (41) IntTrsBoundProof (UPPER BOUND(ID)) 22.95/8.96 22.95/8.96 Computed RUNTIME bound using CoFloCo for: div 22.95/8.96 after applying outer abstraction to obtain an ITS, 22.95/8.96 resulting in: O(n^1) with polynomial bound: 5 + 2*z' 22.95/8.96 22.95/8.96 ---------------------------------------- 22.95/8.96 22.95/8.96 (42) 22.95/8.96 Obligation: 22.95/8.96 Complexity RNTS consisting of the following rules: 22.95/8.96 22.95/8.96 div(z, z') -{ 2 + 2*z' }-> if(s1, 1 + div(s', 1 + (1 + (z' - 2))), 0) :|: s1 >= 0, s1 <= 1, s' >= 0, s' <= 0, z' - 2 >= 0, z - 2 >= 0 22.95/8.96 div(z, z') -{ 2 + z' }-> if(s2, 1 + div(0, 1 + (1 + (z' - 2))), 0) :|: s2 >= 0, s2 <= 1, z' - 2 >= 0, z - 2 >= 0 22.95/8.96 div(z, z') -{ 3 }-> if(1, 1 + div(0, 1 + 0), 0) :|: z = 1 + 0, z' = 1 + 0 22.95/8.96 div(z, z') -{ 2 }-> if(1, 1 + div(0, 1 + 0), 0) :|: z - 1 >= 0, z' = 1 + 0 22.95/8.96 div(z, z') -{ 3 }-> if(0, 1 + div(0, 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z = 1 + 0 22.95/8.96 div(z, z') -{ 2 }-> if(0, 1 + div(0, 1 + (1 + (z' - 2))), 0) :|: z' - 2 >= 0, z = 1 + 0 22.95/8.96 div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 22.95/8.96 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 22.95/8.96 geq(z, z') -{ 2 + z' }-> s'' :|: s'' >= 0, s'' <= 1, z' - 1 >= 0, z - 1 >= 0 22.95/8.96 geq(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 0 22.95/8.96 geq(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 22.95/8.96 if(z, z', z'') -{ 1 }-> z' :|: z'' >= 0, z = 1, z' >= 0 22.95/8.96 if(z, z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' >= 0, z = 0 22.95/8.96 minus(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= 0, z' - 1 >= 0, z - 1 >= 0 22.95/8.96 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 22.95/8.96 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 22.95/8.96 22.95/8.96 Function symbols to be analyzed: 22.95/8.96 Previous analysis results are: 22.95/8.96 minus: runtime: O(n^1) [1 + z'], size: O(1) [0] 22.95/8.96 if: runtime: O(1) [1], size: O(n^1) [z' + z''] 22.95/8.96 geq: runtime: O(n^1) [2 + z'], size: O(1) [1] 22.95/8.96 div: runtime: O(n^1) [5 + 2*z'], size: O(1) [1] 22.95/8.96 22.95/8.96 ---------------------------------------- 22.95/8.96 22.95/8.96 (43) FinalProof (FINISHED) 22.95/8.96 Computed overall runtime complexity 22.95/8.96 ---------------------------------------- 22.95/8.96 22.95/8.96 (44) 22.95/8.96 BOUNDS(1, n^1) 22.95/8.96 22.95/8.96 ---------------------------------------- 22.95/8.96 22.95/8.96 (45) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 22.95/8.96 Transformed a relative TRS into a decreasing-loop problem. 22.95/8.96 ---------------------------------------- 22.95/8.96 22.95/8.96 (46) 22.95/8.96 Obligation: 22.95/8.96 Analyzing the following TRS for decreasing loops: 22.95/8.96 22.95/8.96 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 22.95/8.96 22.95/8.96 22.95/8.96 The TRS R consists of the following rules: 22.95/8.96 22.95/8.96 minus(0, Y) -> 0 22.95/8.96 minus(s(X), s(Y)) -> minus(X, Y) 22.95/8.96 geq(X, 0) -> true 22.95/8.96 geq(0, s(Y)) -> false 22.95/8.96 geq(s(X), s(Y)) -> geq(X, Y) 22.95/8.96 div(0, s(Y)) -> 0 22.95/8.96 div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0) 22.95/8.96 if(true, X, Y) -> X 22.95/8.96 if(false, X, Y) -> Y 22.95/8.96 22.95/8.96 S is empty. 22.95/8.96 Rewrite Strategy: FULL 22.95/8.96 ---------------------------------------- 22.95/8.96 22.95/8.96 (47) DecreasingLoopProof (LOWER BOUND(ID)) 22.95/8.96 The following loop(s) give(s) rise to the lower bound Omega(n^1): 22.95/8.96 22.95/8.96 The rewrite sequence 22.95/8.96 22.95/8.96 minus(s(X), s(Y)) ->^+ minus(X, Y) 22.95/8.96 22.95/8.96 gives rise to a decreasing loop by considering the right hand sides subterm at position []. 22.95/8.96 22.95/8.96 The pumping substitution is [X / s(X), Y / s(Y)]. 22.95/8.96 22.95/8.96 The result substitution is [ ]. 22.95/8.96 22.95/8.96 22.95/8.96 22.95/8.96 22.95/8.96 ---------------------------------------- 22.95/8.96 22.95/8.96 (48) 22.95/8.96 Complex Obligation (BEST) 22.95/8.96 22.95/8.96 ---------------------------------------- 22.95/8.96 22.95/8.96 (49) 22.95/8.96 Obligation: 22.95/8.96 Proved the lower bound n^1 for the following obligation: 22.95/8.96 22.95/8.96 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 22.95/8.96 22.95/8.96 22.95/8.96 The TRS R consists of the following rules: 22.95/8.96 22.95/8.96 minus(0, Y) -> 0 22.95/8.96 minus(s(X), s(Y)) -> minus(X, Y) 22.95/8.96 geq(X, 0) -> true 22.95/8.96 geq(0, s(Y)) -> false 22.95/8.96 geq(s(X), s(Y)) -> geq(X, Y) 22.95/8.96 div(0, s(Y)) -> 0 22.95/8.96 div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0) 22.95/8.96 if(true, X, Y) -> X 22.95/8.96 if(false, X, Y) -> Y 22.95/8.96 22.95/8.96 S is empty. 22.95/8.96 Rewrite Strategy: FULL 22.95/8.96 ---------------------------------------- 22.95/8.96 22.95/8.96 (50) LowerBoundPropagationProof (FINISHED) 22.95/8.96 Propagated lower bound. 22.95/8.96 ---------------------------------------- 22.95/8.96 22.95/8.96 (51) 22.95/8.96 BOUNDS(n^1, INF) 22.95/8.96 22.95/8.96 ---------------------------------------- 22.95/8.96 22.95/8.96 (52) 22.95/8.96 Obligation: 22.95/8.96 Analyzing the following TRS for decreasing loops: 22.95/8.96 22.95/8.96 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 22.95/8.96 22.95/8.96 22.95/8.96 The TRS R consists of the following rules: 22.95/8.96 22.95/8.96 minus(0, Y) -> 0 22.95/8.96 minus(s(X), s(Y)) -> minus(X, Y) 22.95/8.96 geq(X, 0) -> true 22.95/8.96 geq(0, s(Y)) -> false 22.95/8.96 geq(s(X), s(Y)) -> geq(X, Y) 22.95/8.96 div(0, s(Y)) -> 0 22.95/8.96 div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0) 22.95/8.96 if(true, X, Y) -> X 22.95/8.96 if(false, X, Y) -> Y 22.95/8.96 22.95/8.96 S is empty. 22.95/8.96 Rewrite Strategy: FULL 22.95/8.98 EOF