3.07/1.58 WORST_CASE(NON_POLY, ?) 3.07/1.59 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.07/1.59 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.07/1.59 3.07/1.59 3.07/1.59 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.07/1.59 3.07/1.59 (0) CpxTRS 3.07/1.59 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.07/1.59 (2) TRS for Loop Detection 3.07/1.59 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.07/1.59 (4) BEST 3.07/1.59 (5) proven lower bound 3.07/1.59 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 3.07/1.59 (7) BOUNDS(n^1, INF) 3.07/1.59 (8) TRS for Loop Detection 3.07/1.59 (9) InfiniteLowerBoundProof [FINISHED, 0 ms] 3.07/1.59 (10) BOUNDS(INF, INF) 3.07/1.59 3.07/1.59 3.07/1.59 ---------------------------------------- 3.07/1.59 3.07/1.59 (0) 3.07/1.59 Obligation: 3.07/1.59 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.07/1.59 3.07/1.59 3.07/1.59 The TRS R consists of the following rules: 3.07/1.59 3.07/1.59 eq(0, 0) -> true 3.07/1.59 eq(s(X), s(Y)) -> eq(X, Y) 3.07/1.59 eq(X, Y) -> false 3.07/1.59 inf(X) -> cons(X, inf(s(X))) 3.07/1.59 take(0, X) -> nil 3.07/1.59 take(s(X), cons(Y, L)) -> cons(Y, take(X, L)) 3.07/1.59 length(nil) -> 0 3.07/1.59 length(cons(X, L)) -> s(length(L)) 3.07/1.59 3.07/1.59 S is empty. 3.07/1.59 Rewrite Strategy: FULL 3.07/1.59 ---------------------------------------- 3.07/1.59 3.07/1.59 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.07/1.59 Transformed a relative TRS into a decreasing-loop problem. 3.07/1.59 ---------------------------------------- 3.07/1.59 3.07/1.59 (2) 3.07/1.59 Obligation: 3.07/1.59 Analyzing the following TRS for decreasing loops: 3.07/1.59 3.07/1.59 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.07/1.59 3.07/1.59 3.07/1.59 The TRS R consists of the following rules: 3.07/1.59 3.07/1.59 eq(0, 0) -> true 3.07/1.59 eq(s(X), s(Y)) -> eq(X, Y) 3.07/1.59 eq(X, Y) -> false 3.07/1.59 inf(X) -> cons(X, inf(s(X))) 3.07/1.59 take(0, X) -> nil 3.07/1.59 take(s(X), cons(Y, L)) -> cons(Y, take(X, L)) 3.07/1.59 length(nil) -> 0 3.07/1.59 length(cons(X, L)) -> s(length(L)) 3.07/1.59 3.07/1.59 S is empty. 3.07/1.59 Rewrite Strategy: FULL 3.07/1.59 ---------------------------------------- 3.07/1.59 3.07/1.59 (3) DecreasingLoopProof (LOWER BOUND(ID)) 3.07/1.59 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.07/1.59 3.07/1.59 The rewrite sequence 3.07/1.59 3.07/1.59 take(s(X), cons(Y, L)) ->^+ cons(Y, take(X, L)) 3.07/1.59 3.07/1.59 gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. 3.07/1.59 3.07/1.59 The pumping substitution is [X / s(X), L / cons(Y, L)]. 3.07/1.59 3.07/1.59 The result substitution is [ ]. 3.07/1.59 3.07/1.59 3.07/1.59 3.07/1.59 3.07/1.59 ---------------------------------------- 3.07/1.59 3.07/1.59 (4) 3.07/1.59 Complex Obligation (BEST) 3.07/1.59 3.07/1.59 ---------------------------------------- 3.07/1.59 3.07/1.59 (5) 3.07/1.59 Obligation: 3.07/1.59 Proved the lower bound n^1 for the following obligation: 3.07/1.59 3.07/1.59 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.07/1.59 3.07/1.59 3.07/1.59 The TRS R consists of the following rules: 3.07/1.59 3.07/1.59 eq(0, 0) -> true 3.07/1.59 eq(s(X), s(Y)) -> eq(X, Y) 3.07/1.59 eq(X, Y) -> false 3.07/1.59 inf(X) -> cons(X, inf(s(X))) 3.07/1.59 take(0, X) -> nil 3.07/1.59 take(s(X), cons(Y, L)) -> cons(Y, take(X, L)) 3.07/1.59 length(nil) -> 0 3.07/1.59 length(cons(X, L)) -> s(length(L)) 3.07/1.59 3.07/1.59 S is empty. 3.07/1.59 Rewrite Strategy: FULL 3.07/1.59 ---------------------------------------- 3.07/1.59 3.07/1.59 (6) LowerBoundPropagationProof (FINISHED) 3.07/1.59 Propagated lower bound. 3.07/1.59 ---------------------------------------- 3.07/1.59 3.07/1.59 (7) 3.07/1.59 BOUNDS(n^1, INF) 3.07/1.59 3.07/1.59 ---------------------------------------- 3.07/1.59 3.07/1.59 (8) 3.07/1.59 Obligation: 3.07/1.59 Analyzing the following TRS for decreasing loops: 3.07/1.59 3.07/1.59 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.07/1.59 3.07/1.59 3.07/1.59 The TRS R consists of the following rules: 3.07/1.59 3.07/1.59 eq(0, 0) -> true 3.07/1.59 eq(s(X), s(Y)) -> eq(X, Y) 3.07/1.59 eq(X, Y) -> false 3.07/1.59 inf(X) -> cons(X, inf(s(X))) 3.07/1.59 take(0, X) -> nil 3.07/1.59 take(s(X), cons(Y, L)) -> cons(Y, take(X, L)) 3.07/1.59 length(nil) -> 0 3.07/1.59 length(cons(X, L)) -> s(length(L)) 3.07/1.59 3.07/1.59 S is empty. 3.07/1.59 Rewrite Strategy: FULL 3.07/1.59 ---------------------------------------- 3.07/1.59 3.07/1.59 (9) InfiniteLowerBoundProof (FINISHED) 3.07/1.59 The following loop proves infinite runtime complexity: 3.07/1.59 3.07/1.59 The rewrite sequence 3.07/1.59 3.07/1.59 inf(X) ->^+ cons(X, inf(s(X))) 3.07/1.59 3.07/1.59 gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. 3.07/1.59 3.07/1.59 The pumping substitution is [ ]. 3.07/1.59 3.07/1.59 The result substitution is [X / s(X)]. 3.07/1.59 3.07/1.59 3.07/1.59 3.07/1.59 3.07/1.59 ---------------------------------------- 3.07/1.59 3.07/1.59 (10) 3.07/1.59 BOUNDS(INF, INF) 3.07/1.61 EOF