2.95/1.51 WORST_CASE(NON_POLY, ?) 3.09/1.52 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 3.09/1.52 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.09/1.52 3.09/1.52 3.09/1.52 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.09/1.52 3.09/1.52 (0) CpxTRS 3.09/1.52 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.09/1.52 (2) TRS for Loop Detection 3.09/1.52 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.09/1.52 (4) BEST 3.09/1.52 (5) proven lower bound 3.09/1.52 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 3.09/1.52 (7) BOUNDS(n^1, INF) 3.09/1.52 (8) TRS for Loop Detection 3.09/1.52 (9) InfiniteLowerBoundProof [FINISHED, 0 ms] 3.09/1.52 (10) BOUNDS(INF, INF) 3.09/1.52 3.09/1.52 3.09/1.52 ---------------------------------------- 3.09/1.52 3.09/1.52 (0) 3.09/1.52 Obligation: 3.09/1.52 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.09/1.52 3.09/1.52 3.09/1.52 The TRS R consists of the following rules: 3.09/1.52 3.09/1.52 filter(cons(X, Y), 0, M) -> cons(0, filter(Y, M, M)) 3.09/1.52 filter(cons(X, Y), s(N), M) -> cons(X, filter(Y, N, M)) 3.09/1.52 sieve(cons(0, Y)) -> cons(0, sieve(Y)) 3.09/1.52 sieve(cons(s(N), Y)) -> cons(s(N), sieve(filter(Y, N, N))) 3.09/1.52 nats(N) -> cons(N, nats(s(N))) 3.09/1.52 zprimes -> sieve(nats(s(s(0)))) 3.09/1.52 3.09/1.52 S is empty. 3.09/1.52 Rewrite Strategy: FULL 3.09/1.52 ---------------------------------------- 3.09/1.52 3.09/1.52 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.09/1.52 Transformed a relative TRS into a decreasing-loop problem. 3.09/1.52 ---------------------------------------- 3.09/1.52 3.09/1.52 (2) 3.09/1.52 Obligation: 3.09/1.52 Analyzing the following TRS for decreasing loops: 3.09/1.52 3.09/1.52 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.09/1.52 3.09/1.52 3.09/1.52 The TRS R consists of the following rules: 3.09/1.52 3.09/1.52 filter(cons(X, Y), 0, M) -> cons(0, filter(Y, M, M)) 3.09/1.52 filter(cons(X, Y), s(N), M) -> cons(X, filter(Y, N, M)) 3.09/1.52 sieve(cons(0, Y)) -> cons(0, sieve(Y)) 3.09/1.52 sieve(cons(s(N), Y)) -> cons(s(N), sieve(filter(Y, N, N))) 3.09/1.52 nats(N) -> cons(N, nats(s(N))) 3.09/1.52 zprimes -> sieve(nats(s(s(0)))) 3.09/1.52 3.09/1.52 S is empty. 3.09/1.52 Rewrite Strategy: FULL 3.09/1.52 ---------------------------------------- 3.09/1.52 3.09/1.52 (3) DecreasingLoopProof (LOWER BOUND(ID)) 3.09/1.52 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.09/1.52 3.09/1.52 The rewrite sequence 3.09/1.52 3.09/1.52 filter(cons(X, Y), s(N), M) ->^+ cons(X, filter(Y, N, M)) 3.09/1.52 3.09/1.52 gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. 3.09/1.52 3.09/1.52 The pumping substitution is [Y / cons(X, Y), N / s(N)]. 3.09/1.52 3.09/1.52 The result substitution is [ ]. 3.09/1.52 3.09/1.52 3.09/1.52 3.09/1.52 3.09/1.52 ---------------------------------------- 3.09/1.52 3.09/1.52 (4) 3.09/1.52 Complex Obligation (BEST) 3.09/1.52 3.09/1.52 ---------------------------------------- 3.09/1.52 3.09/1.52 (5) 3.09/1.52 Obligation: 3.09/1.52 Proved the lower bound n^1 for the following obligation: 3.09/1.52 3.09/1.52 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.09/1.52 3.09/1.52 3.09/1.52 The TRS R consists of the following rules: 3.09/1.52 3.09/1.52 filter(cons(X, Y), 0, M) -> cons(0, filter(Y, M, M)) 3.09/1.52 filter(cons(X, Y), s(N), M) -> cons(X, filter(Y, N, M)) 3.09/1.52 sieve(cons(0, Y)) -> cons(0, sieve(Y)) 3.09/1.52 sieve(cons(s(N), Y)) -> cons(s(N), sieve(filter(Y, N, N))) 3.09/1.52 nats(N) -> cons(N, nats(s(N))) 3.09/1.52 zprimes -> sieve(nats(s(s(0)))) 3.09/1.52 3.09/1.52 S is empty. 3.09/1.52 Rewrite Strategy: FULL 3.09/1.52 ---------------------------------------- 3.09/1.52 3.09/1.52 (6) LowerBoundPropagationProof (FINISHED) 3.09/1.52 Propagated lower bound. 3.09/1.52 ---------------------------------------- 3.09/1.52 3.09/1.52 (7) 3.09/1.52 BOUNDS(n^1, INF) 3.09/1.52 3.09/1.52 ---------------------------------------- 3.09/1.52 3.09/1.52 (8) 3.09/1.52 Obligation: 3.09/1.52 Analyzing the following TRS for decreasing loops: 3.09/1.52 3.09/1.52 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.09/1.52 3.09/1.52 3.09/1.52 The TRS R consists of the following rules: 3.09/1.52 3.09/1.52 filter(cons(X, Y), 0, M) -> cons(0, filter(Y, M, M)) 3.09/1.52 filter(cons(X, Y), s(N), M) -> cons(X, filter(Y, N, M)) 3.09/1.52 sieve(cons(0, Y)) -> cons(0, sieve(Y)) 3.09/1.52 sieve(cons(s(N), Y)) -> cons(s(N), sieve(filter(Y, N, N))) 3.09/1.52 nats(N) -> cons(N, nats(s(N))) 3.09/1.52 zprimes -> sieve(nats(s(s(0)))) 3.09/1.52 3.09/1.52 S is empty. 3.09/1.52 Rewrite Strategy: FULL 3.09/1.52 ---------------------------------------- 3.09/1.52 3.09/1.52 (9) InfiniteLowerBoundProof (FINISHED) 3.09/1.52 The following loop proves infinite runtime complexity: 3.09/1.52 3.09/1.52 The rewrite sequence 3.09/1.52 3.09/1.52 nats(N) ->^+ cons(N, nats(s(N))) 3.09/1.52 3.09/1.52 gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. 3.09/1.52 3.09/1.52 The pumping substitution is [ ]. 3.09/1.52 3.09/1.52 The result substitution is [N / s(N)]. 3.09/1.52 3.09/1.52 3.09/1.52 3.09/1.52 3.09/1.52 ---------------------------------------- 3.09/1.52 3.09/1.52 (10) 3.09/1.52 BOUNDS(INF, INF) 3.12/1.55 EOF