2.99/1.60 WORST_CASE(NON_POLY, ?) 2.99/1.61 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 2.99/1.61 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 2.99/1.61 2.99/1.61 2.99/1.61 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 2.99/1.61 2.99/1.61 (0) CpxTRS 2.99/1.61 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 2.99/1.61 (2) TRS for Loop Detection 2.99/1.61 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 2.99/1.61 (4) BEST 2.99/1.61 (5) proven lower bound 2.99/1.61 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 2.99/1.61 (7) BOUNDS(n^1, INF) 2.99/1.61 (8) TRS for Loop Detection 2.99/1.61 (9) InfiniteLowerBoundProof [FINISHED, 0 ms] 2.99/1.61 (10) BOUNDS(INF, INF) 2.99/1.61 2.99/1.61 2.99/1.61 ---------------------------------------- 2.99/1.61 2.99/1.61 (0) 2.99/1.61 Obligation: 2.99/1.61 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 2.99/1.61 2.99/1.61 2.99/1.61 The TRS R consists of the following rules: 2.99/1.61 2.99/1.61 fact(X) -> if(zero(X), s(0), prod(X, fact(p(X)))) 2.99/1.61 add(0, X) -> X 2.99/1.61 add(s(X), Y) -> s(add(X, Y)) 2.99/1.61 prod(0, X) -> 0 2.99/1.61 prod(s(X), Y) -> add(Y, prod(X, Y)) 2.99/1.61 if(true, X, Y) -> X 2.99/1.61 if(false, X, Y) -> Y 2.99/1.61 zero(0) -> true 2.99/1.61 zero(s(X)) -> false 2.99/1.61 p(s(X)) -> X 2.99/1.61 2.99/1.61 S is empty. 2.99/1.61 Rewrite Strategy: FULL 2.99/1.61 ---------------------------------------- 2.99/1.61 2.99/1.61 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 2.99/1.61 Transformed a relative TRS into a decreasing-loop problem. 2.99/1.61 ---------------------------------------- 2.99/1.61 2.99/1.61 (2) 2.99/1.61 Obligation: 2.99/1.61 Analyzing the following TRS for decreasing loops: 2.99/1.61 2.99/1.61 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 2.99/1.61 2.99/1.61 2.99/1.61 The TRS R consists of the following rules: 2.99/1.61 2.99/1.61 fact(X) -> if(zero(X), s(0), prod(X, fact(p(X)))) 2.99/1.61 add(0, X) -> X 2.99/1.61 add(s(X), Y) -> s(add(X, Y)) 2.99/1.61 prod(0, X) -> 0 2.99/1.61 prod(s(X), Y) -> add(Y, prod(X, Y)) 2.99/1.61 if(true, X, Y) -> X 2.99/1.61 if(false, X, Y) -> Y 2.99/1.61 zero(0) -> true 2.99/1.61 zero(s(X)) -> false 2.99/1.61 p(s(X)) -> X 2.99/1.61 2.99/1.61 S is empty. 2.99/1.61 Rewrite Strategy: FULL 2.99/1.61 ---------------------------------------- 2.99/1.61 2.99/1.61 (3) DecreasingLoopProof (LOWER BOUND(ID)) 2.99/1.61 The following loop(s) give(s) rise to the lower bound Omega(n^1): 2.99/1.61 2.99/1.61 The rewrite sequence 2.99/1.61 2.99/1.61 add(s(X), Y) ->^+ s(add(X, Y)) 2.99/1.61 2.99/1.61 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 2.99/1.61 2.99/1.61 The pumping substitution is [X / s(X)]. 2.99/1.61 2.99/1.61 The result substitution is [ ]. 2.99/1.61 2.99/1.61 2.99/1.61 2.99/1.61 2.99/1.61 ---------------------------------------- 2.99/1.61 2.99/1.61 (4) 2.99/1.61 Complex Obligation (BEST) 2.99/1.61 2.99/1.61 ---------------------------------------- 2.99/1.61 2.99/1.61 (5) 2.99/1.61 Obligation: 2.99/1.61 Proved the lower bound n^1 for the following obligation: 2.99/1.61 2.99/1.61 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 2.99/1.61 2.99/1.61 2.99/1.61 The TRS R consists of the following rules: 2.99/1.61 2.99/1.61 fact(X) -> if(zero(X), s(0), prod(X, fact(p(X)))) 2.99/1.61 add(0, X) -> X 2.99/1.61 add(s(X), Y) -> s(add(X, Y)) 2.99/1.61 prod(0, X) -> 0 2.99/1.61 prod(s(X), Y) -> add(Y, prod(X, Y)) 2.99/1.61 if(true, X, Y) -> X 2.99/1.61 if(false, X, Y) -> Y 2.99/1.61 zero(0) -> true 2.99/1.61 zero(s(X)) -> false 2.99/1.61 p(s(X)) -> X 2.99/1.61 2.99/1.61 S is empty. 2.99/1.61 Rewrite Strategy: FULL 2.99/1.61 ---------------------------------------- 2.99/1.61 2.99/1.61 (6) LowerBoundPropagationProof (FINISHED) 2.99/1.61 Propagated lower bound. 2.99/1.61 ---------------------------------------- 2.99/1.61 2.99/1.61 (7) 2.99/1.61 BOUNDS(n^1, INF) 2.99/1.61 2.99/1.61 ---------------------------------------- 2.99/1.61 2.99/1.61 (8) 2.99/1.61 Obligation: 2.99/1.61 Analyzing the following TRS for decreasing loops: 2.99/1.61 2.99/1.61 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 2.99/1.61 2.99/1.61 2.99/1.61 The TRS R consists of the following rules: 2.99/1.61 2.99/1.61 fact(X) -> if(zero(X), s(0), prod(X, fact(p(X)))) 2.99/1.61 add(0, X) -> X 2.99/1.61 add(s(X), Y) -> s(add(X, Y)) 2.99/1.61 prod(0, X) -> 0 2.99/1.61 prod(s(X), Y) -> add(Y, prod(X, Y)) 2.99/1.61 if(true, X, Y) -> X 2.99/1.61 if(false, X, Y) -> Y 2.99/1.61 zero(0) -> true 2.99/1.61 zero(s(X)) -> false 2.99/1.61 p(s(X)) -> X 2.99/1.61 2.99/1.61 S is empty. 2.99/1.61 Rewrite Strategy: FULL 2.99/1.61 ---------------------------------------- 2.99/1.61 2.99/1.61 (9) InfiniteLowerBoundProof (FINISHED) 2.99/1.61 The following loop proves infinite runtime complexity: 2.99/1.61 2.99/1.61 The rewrite sequence 2.99/1.61 2.99/1.61 fact(X) ->^+ if(zero(X), s(0), prod(X, fact(p(X)))) 2.99/1.61 2.99/1.61 gives rise to a decreasing loop by considering the right hand sides subterm at position [2,1]. 2.99/1.61 2.99/1.61 The pumping substitution is [ ]. 2.99/1.61 2.99/1.61 The result substitution is [X / p(X)]. 2.99/1.61 2.99/1.61 2.99/1.61 2.99/1.61 2.99/1.61 ---------------------------------------- 2.99/1.61 2.99/1.61 (10) 2.99/1.61 BOUNDS(INF, INF) 3.30/1.65 EOF