27.19/8.42 WORST_CASE(Omega(n^1), O(n^1)) 27.19/8.43 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 27.19/8.43 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 27.19/8.43 27.19/8.43 27.19/8.43 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 27.19/8.43 27.19/8.43 (0) CpxTRS 27.19/8.43 (1) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] 27.19/8.43 (2) CpxTRS 27.19/8.43 (3) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] 27.19/8.43 (4) CpxWeightedTrs 27.19/8.43 (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 1 ms] 27.19/8.43 (6) CpxTypedWeightedTrs 27.19/8.43 (7) CompletionProof [UPPER BOUND(ID), 0 ms] 27.19/8.43 (8) CpxTypedWeightedCompleteTrs 27.19/8.43 (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 3 ms] 27.19/8.43 (10) CpxRNTS 27.19/8.43 (11) CompleteCoflocoProof [FINISHED, 270 ms] 27.19/8.43 (12) BOUNDS(1, n^1) 27.19/8.43 (13) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 27.19/8.43 (14) TRS for Loop Detection 27.19/8.43 (15) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 27.19/8.43 (16) BEST 27.19/8.43 (17) proven lower bound 27.19/8.43 (18) LowerBoundPropagationProof [FINISHED, 0 ms] 27.19/8.43 (19) BOUNDS(n^1, INF) 27.19/8.43 (20) TRS for Loop Detection 27.19/8.43 27.19/8.43 27.19/8.43 ---------------------------------------- 27.19/8.43 27.19/8.43 (0) 27.19/8.43 Obligation: 27.19/8.43 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 27.19/8.43 27.19/8.43 27.19/8.43 The TRS R consists of the following rules: 27.19/8.43 27.19/8.43 minus(x, 0) -> x 27.19/8.43 minus(s(x), s(y)) -> minus(x, y) 27.19/8.43 le(0, y) -> true 27.19/8.43 le(s(x), 0) -> false 27.19/8.43 le(s(x), s(y)) -> le(x, y) 27.19/8.43 quot(0, s(y)) -> 0 27.19/8.43 quot(s(x), s(y)) -> s(quot(minus(s(x), s(y)), s(y))) 27.19/8.43 27.19/8.43 S is empty. 27.19/8.43 Rewrite Strategy: FULL 27.19/8.43 ---------------------------------------- 27.19/8.43 27.19/8.43 (1) RcToIrcProof (BOTH BOUNDS(ID, ID)) 27.19/8.43 Converted rc-obligation to irc-obligation. 27.19/8.43 27.19/8.43 The duplicating contexts are: 27.19/8.43 quot(s(x), s([])) 27.19/8.43 27.19/8.43 27.19/8.43 The defined contexts are: 27.19/8.43 quot([], s(x1)) 27.19/8.43 minus(s([]), s(x1)) 27.19/8.43 minus([], x1) 27.19/8.43 27.19/8.43 27.19/8.43 [] just represents basic- or constructor-terms in the following defined contexts: 27.19/8.43 quot([], s(x1)) 27.19/8.43 27.19/8.43 27.19/8.43 As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc. 27.19/8.43 ---------------------------------------- 27.19/8.43 27.19/8.43 (2) 27.19/8.43 Obligation: 27.19/8.43 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). 27.19/8.43 27.19/8.43 27.19/8.43 The TRS R consists of the following rules: 27.19/8.43 27.19/8.43 minus(x, 0) -> x 27.19/8.43 minus(s(x), s(y)) -> minus(x, y) 27.19/8.43 le(0, y) -> true 27.19/8.43 le(s(x), 0) -> false 27.19/8.43 le(s(x), s(y)) -> le(x, y) 27.19/8.43 quot(0, s(y)) -> 0 27.19/8.43 quot(s(x), s(y)) -> s(quot(minus(s(x), s(y)), s(y))) 27.19/8.43 27.19/8.43 S is empty. 27.19/8.43 Rewrite Strategy: INNERMOST 27.19/8.43 ---------------------------------------- 27.19/8.43 27.19/8.43 (3) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) 27.19/8.43 Transformed relative TRS to weighted TRS 27.19/8.43 ---------------------------------------- 27.19/8.43 27.19/8.43 (4) 27.19/8.43 Obligation: 27.19/8.43 The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). 27.19/8.43 27.19/8.43 27.19/8.43 The TRS R consists of the following rules: 27.19/8.43 27.19/8.43 minus(x, 0) -> x [1] 27.19/8.43 minus(s(x), s(y)) -> minus(x, y) [1] 27.19/8.43 le(0, y) -> true [1] 27.19/8.43 le(s(x), 0) -> false [1] 27.19/8.43 le(s(x), s(y)) -> le(x, y) [1] 27.19/8.43 quot(0, s(y)) -> 0 [1] 27.19/8.43 quot(s(x), s(y)) -> s(quot(minus(s(x), s(y)), s(y))) [1] 27.19/8.43 27.19/8.43 Rewrite Strategy: INNERMOST 27.19/8.43 ---------------------------------------- 27.19/8.43 27.19/8.43 (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 27.19/8.43 Infered types. 27.19/8.43 ---------------------------------------- 27.19/8.43 27.19/8.43 (6) 27.19/8.43 Obligation: 27.19/8.43 Runtime Complexity Weighted TRS with Types. 27.19/8.43 The TRS R consists of the following rules: 27.19/8.43 27.19/8.43 minus(x, 0) -> x [1] 27.19/8.43 minus(s(x), s(y)) -> minus(x, y) [1] 27.19/8.43 le(0, y) -> true [1] 27.19/8.43 le(s(x), 0) -> false [1] 27.19/8.43 le(s(x), s(y)) -> le(x, y) [1] 27.19/8.43 quot(0, s(y)) -> 0 [1] 27.19/8.43 quot(s(x), s(y)) -> s(quot(minus(s(x), s(y)), s(y))) [1] 27.19/8.43 27.19/8.43 The TRS has the following type information: 27.19/8.43 minus :: 0:s -> 0:s -> 0:s 27.19/8.43 0 :: 0:s 27.19/8.43 s :: 0:s -> 0:s 27.19/8.43 le :: 0:s -> 0:s -> true:false 27.19/8.43 true :: true:false 27.19/8.43 false :: true:false 27.19/8.43 quot :: 0:s -> 0:s -> 0:s 27.19/8.43 27.19/8.43 Rewrite Strategy: INNERMOST 27.19/8.43 ---------------------------------------- 27.19/8.43 27.19/8.43 (7) CompletionProof (UPPER BOUND(ID)) 27.19/8.43 The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: 27.19/8.43 27.19/8.43 minus(v0, v1) -> null_minus [0] 27.19/8.43 quot(v0, v1) -> null_quot [0] 27.19/8.43 le(v0, v1) -> null_le [0] 27.19/8.43 27.19/8.43 And the following fresh constants: null_minus, null_quot, null_le 27.19/8.43 27.19/8.43 ---------------------------------------- 27.19/8.43 27.19/8.43 (8) 27.19/8.43 Obligation: 27.19/8.43 Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: 27.19/8.43 27.19/8.43 Runtime Complexity Weighted TRS with Types. 27.19/8.43 The TRS R consists of the following rules: 27.19/8.43 27.19/8.43 minus(x, 0) -> x [1] 27.19/8.43 minus(s(x), s(y)) -> minus(x, y) [1] 27.19/8.43 le(0, y) -> true [1] 27.19/8.43 le(s(x), 0) -> false [1] 27.19/8.43 le(s(x), s(y)) -> le(x, y) [1] 27.19/8.43 quot(0, s(y)) -> 0 [1] 27.19/8.43 quot(s(x), s(y)) -> s(quot(minus(s(x), s(y)), s(y))) [1] 27.19/8.43 minus(v0, v1) -> null_minus [0] 27.19/8.43 quot(v0, v1) -> null_quot [0] 27.19/8.43 le(v0, v1) -> null_le [0] 27.19/8.43 27.19/8.43 The TRS has the following type information: 27.19/8.43 minus :: 0:s:null_minus:null_quot -> 0:s:null_minus:null_quot -> 0:s:null_minus:null_quot 27.19/8.43 0 :: 0:s:null_minus:null_quot 27.19/8.43 s :: 0:s:null_minus:null_quot -> 0:s:null_minus:null_quot 27.19/8.43 le :: 0:s:null_minus:null_quot -> 0:s:null_minus:null_quot -> true:false:null_le 27.19/8.43 true :: true:false:null_le 27.19/8.43 false :: true:false:null_le 27.19/8.43 quot :: 0:s:null_minus:null_quot -> 0:s:null_minus:null_quot -> 0:s:null_minus:null_quot 27.19/8.43 null_minus :: 0:s:null_minus:null_quot 27.19/8.43 null_quot :: 0:s:null_minus:null_quot 27.19/8.43 null_le :: true:false:null_le 27.19/8.43 27.19/8.43 Rewrite Strategy: INNERMOST 27.19/8.43 ---------------------------------------- 27.19/8.43 27.19/8.43 (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) 27.19/8.43 Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. 27.19/8.43 The constant constructors are abstracted as follows: 27.19/8.43 27.19/8.43 0 => 0 27.19/8.43 true => 2 27.19/8.43 false => 1 27.19/8.43 null_minus => 0 27.19/8.43 null_quot => 0 27.19/8.43 null_le => 0 27.19/8.43 27.19/8.43 ---------------------------------------- 27.19/8.43 27.19/8.43 (10) 27.19/8.43 Obligation: 27.19/8.43 Complexity RNTS consisting of the following rules: 27.19/8.43 27.19/8.43 le(z, z') -{ 1 }-> le(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x 27.19/8.43 le(z, z') -{ 1 }-> 2 :|: y >= 0, z = 0, z' = y 27.19/8.43 le(z, z') -{ 1 }-> 1 :|: x >= 0, z = 1 + x, z' = 0 27.19/8.43 le(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 27.19/8.43 minus(z, z') -{ 1 }-> x :|: x >= 0, z = x, z' = 0 27.19/8.43 minus(z, z') -{ 1 }-> minus(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x 27.19/8.43 minus(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 27.19/8.43 quot(z, z') -{ 1 }-> 0 :|: z' = 1 + y, y >= 0, z = 0 27.19/8.43 quot(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 27.19/8.43 quot(z, z') -{ 1 }-> 1 + quot(minus(1 + x, 1 + y), 1 + y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x 27.19/8.43 27.19/8.43 Only complete derivations are relevant for the runtime complexity. 27.19/8.43 27.19/8.43 ---------------------------------------- 27.19/8.43 27.19/8.43 (11) CompleteCoflocoProof (FINISHED) 27.19/8.43 Transformed the RNTS (where only complete derivations are relevant) into cost relations for CoFloCo: 27.19/8.43 27.19/8.43 eq(start(V1, V),0,[minus(V1, V, Out)],[V1 >= 0,V >= 0]). 27.19/8.43 eq(start(V1, V),0,[le(V1, V, Out)],[V1 >= 0,V >= 0]). 27.19/8.43 eq(start(V1, V),0,[quot(V1, V, Out)],[V1 >= 0,V >= 0]). 27.19/8.43 eq(minus(V1, V, Out),1,[],[Out = V2,V2 >= 0,V1 = V2,V = 0]). 27.19/8.43 eq(minus(V1, V, Out),1,[minus(V3, V4, Ret)],[Out = Ret,V = 1 + V4,V3 >= 0,V4 >= 0,V1 = 1 + V3]). 27.19/8.43 eq(le(V1, V, Out),1,[],[Out = 2,V5 >= 0,V1 = 0,V = V5]). 27.19/8.43 eq(le(V1, V, Out),1,[],[Out = 1,V6 >= 0,V1 = 1 + V6,V = 0]). 27.19/8.43 eq(le(V1, V, Out),1,[le(V7, V8, Ret1)],[Out = Ret1,V = 1 + V8,V7 >= 0,V8 >= 0,V1 = 1 + V7]). 27.19/8.43 eq(quot(V1, V, Out),1,[],[Out = 0,V = 1 + V9,V9 >= 0,V1 = 0]). 27.19/8.43 eq(quot(V1, V, Out),1,[minus(1 + V11, 1 + V10, Ret10),quot(Ret10, 1 + V10, Ret11)],[Out = 1 + Ret11,V = 1 + V10,V11 >= 0,V10 >= 0,V1 = 1 + V11]). 27.19/8.43 eq(minus(V1, V, Out),0,[],[Out = 0,V13 >= 0,V12 >= 0,V1 = V13,V = V12]). 27.19/8.43 eq(quot(V1, V, Out),0,[],[Out = 0,V15 >= 0,V14 >= 0,V1 = V15,V = V14]). 27.19/8.43 eq(le(V1, V, Out),0,[],[Out = 0,V17 >= 0,V16 >= 0,V1 = V17,V = V16]). 27.19/8.43 input_output_vars(minus(V1,V,Out),[V1,V],[Out]). 27.19/8.43 input_output_vars(le(V1,V,Out),[V1,V],[Out]). 27.19/8.43 input_output_vars(quot(V1,V,Out),[V1,V],[Out]). 27.19/8.43 27.19/8.43 27.19/8.43 CoFloCo proof output: 27.19/8.43 Preprocessing Cost Relations 27.19/8.43 ===================================== 27.19/8.43 27.19/8.43 #### Computed strongly connected components 27.19/8.43 0. recursive : [le/3] 27.19/8.43 1. recursive : [minus/3] 27.19/8.43 2. recursive : [quot/3] 27.19/8.43 3. non_recursive : [start/2] 27.19/8.43 27.19/8.43 #### Obtained direct recursion through partial evaluation 27.19/8.43 0. SCC is partially evaluated into le/3 27.19/8.43 1. SCC is partially evaluated into minus/3 27.19/8.43 2. SCC is partially evaluated into quot/3 27.19/8.43 3. SCC is partially evaluated into start/2 27.19/8.43 27.19/8.43 Control-Flow Refinement of Cost Relations 27.19/8.43 ===================================== 27.19/8.43 27.19/8.43 ### Specialization of cost equations le/3 27.19/8.43 * CE 10 is refined into CE [14] 27.19/8.43 * CE 8 is refined into CE [15] 27.19/8.43 * CE 7 is refined into CE [16] 27.19/8.43 * CE 9 is refined into CE [17] 27.19/8.43 27.19/8.43 27.19/8.43 ### Cost equations --> "Loop" of le/3 27.19/8.43 * CEs [17] --> Loop 11 27.19/8.43 * CEs [14] --> Loop 12 27.19/8.43 * CEs [15] --> Loop 13 27.19/8.43 * CEs [16] --> Loop 14 27.19/8.43 27.19/8.43 ### Ranking functions of CR le(V1,V,Out) 27.19/8.43 * RF of phase [11]: [V,V1] 27.19/8.43 27.19/8.43 #### Partial ranking functions of CR le(V1,V,Out) 27.19/8.43 * Partial RF of phase [11]: 27.19/8.43 - RF of loop [11:1]: 27.19/8.43 V 27.19/8.43 V1 27.19/8.43 27.19/8.43 27.19/8.43 ### Specialization of cost equations minus/3 27.19/8.43 * CE 6 is refined into CE [18] 27.19/8.43 * CE 4 is refined into CE [19] 27.19/8.43 * CE 5 is refined into CE [20] 27.19/8.43 27.19/8.43 27.19/8.43 ### Cost equations --> "Loop" of minus/3 27.19/8.43 * CEs [20] --> Loop 15 27.19/8.43 * CEs [18] --> Loop 16 27.19/8.43 * CEs [19] --> Loop 17 27.19/8.43 27.19/8.43 ### Ranking functions of CR minus(V1,V,Out) 27.19/8.43 * RF of phase [15]: [V,V1] 27.19/8.43 27.19/8.43 #### Partial ranking functions of CR minus(V1,V,Out) 27.19/8.43 * Partial RF of phase [15]: 27.19/8.43 - RF of loop [15:1]: 27.19/8.43 V 27.19/8.43 V1 27.19/8.43 27.19/8.43 27.19/8.43 ### Specialization of cost equations quot/3 27.19/8.43 * CE 11 is refined into CE [21] 27.19/8.43 * CE 13 is refined into CE [22] 27.19/8.43 * CE 12 is refined into CE [23,24] 27.19/8.43 27.19/8.43 27.19/8.43 ### Cost equations --> "Loop" of quot/3 27.19/8.43 * CEs [24] --> Loop 18 27.19/8.43 * CEs [23] --> Loop 19 27.19/8.43 * CEs [21,22] --> Loop 20 27.19/8.43 27.19/8.43 ### Ranking functions of CR quot(V1,V,Out) 27.19/8.43 * RF of phase [18]: [V1,V1-V+1] 27.19/8.43 27.19/8.43 #### Partial ranking functions of CR quot(V1,V,Out) 27.19/8.43 * Partial RF of phase [18]: 27.19/8.43 - RF of loop [18:1]: 27.19/8.43 V1 27.19/8.43 V1-V+1 27.19/8.43 27.19/8.43 27.19/8.43 ### Specialization of cost equations start/2 27.19/8.43 * CE 1 is refined into CE [25,26,27] 27.19/8.43 * CE 2 is refined into CE [28,29,30,31,32] 27.19/8.43 * CE 3 is refined into CE [33,34,35] 27.19/8.43 27.19/8.43 27.19/8.43 ### Cost equations --> "Loop" of start/2 27.19/8.43 * CEs [25,29] --> Loop 21 27.19/8.43 * CEs [26,27,28,30,31,32,33,34,35] --> Loop 22 27.19/8.43 27.19/8.43 ### Ranking functions of CR start(V1,V) 27.19/8.43 27.19/8.43 #### Partial ranking functions of CR start(V1,V) 27.19/8.43 27.19/8.43 27.19/8.43 Computing Bounds 27.19/8.43 ===================================== 27.19/8.43 27.19/8.43 #### Cost of chains of le(V1,V,Out): 27.19/8.43 * Chain [[11],14]: 1*it(11)+1 27.19/8.43 Such that:it(11) =< V1 27.19/8.43 27.19/8.43 with precondition: [Out=2,V1>=1,V>=V1] 27.19/8.43 27.19/8.43 * Chain [[11],13]: 1*it(11)+1 27.19/8.43 Such that:it(11) =< V 27.19/8.43 27.19/8.43 with precondition: [Out=1,V>=1,V1>=V+1] 27.19/8.43 27.19/8.43 * Chain [[11],12]: 1*it(11)+0 27.19/8.43 Such that:it(11) =< V 27.19/8.43 27.19/8.43 with precondition: [Out=0,V1>=1,V>=1] 27.19/8.43 27.19/8.43 * Chain [14]: 1 27.19/8.43 with precondition: [V1=0,Out=2,V>=0] 27.19/8.43 27.19/8.43 * Chain [13]: 1 27.19/8.43 with precondition: [V=0,Out=1,V1>=1] 27.19/8.43 27.19/8.43 * Chain [12]: 0 27.19/8.43 with precondition: [Out=0,V1>=0,V>=0] 27.19/8.43 27.19/8.43 27.19/8.43 #### Cost of chains of minus(V1,V,Out): 27.19/8.43 * Chain [[15],17]: 1*it(15)+1 27.19/8.43 Such that:it(15) =< V 27.19/8.43 27.19/8.43 with precondition: [V1=Out+V,V>=1,V1>=V] 27.19/8.43 27.19/8.43 * Chain [[15],16]: 1*it(15)+0 27.19/8.43 Such that:it(15) =< V 27.19/8.43 27.19/8.43 with precondition: [Out=0,V1>=1,V>=1] 27.19/8.43 27.19/8.43 * Chain [17]: 1 27.19/8.43 with precondition: [V=0,V1=Out,V1>=0] 27.19/8.43 27.19/8.43 * Chain [16]: 0 27.19/8.43 with precondition: [Out=0,V1>=0,V>=0] 27.19/8.43 27.19/8.43 27.19/8.43 #### Cost of chains of quot(V1,V,Out): 27.19/8.43 * Chain [[18],20]: 2*it(18)+1*s(5)+1 27.19/8.43 Such that:it(18) =< V1-V+1 27.19/8.43 aux(3) =< V1 27.19/8.43 it(18) =< aux(3) 27.19/8.43 s(5) =< aux(3) 27.19/8.43 27.19/8.43 with precondition: [V>=1,Out>=1,V1+1>=Out+V] 27.19/8.43 27.19/8.43 * Chain [[18],19,20]: 3*it(18)+1*s(6)+2 27.19/8.43 Such that:s(6) =< V 27.19/8.43 aux(4) =< V1 27.19/8.43 it(18) =< aux(4) 27.19/8.43 27.19/8.43 with precondition: [V>=1,Out>=2,V1+1>=Out+V] 27.19/8.43 27.19/8.43 * Chain [20]: 1 27.19/8.43 with precondition: [Out=0,V1>=0,V>=0] 27.19/8.43 27.19/8.43 * Chain [19,20]: 1*s(6)+2 27.19/8.43 Such that:s(6) =< V 27.19/8.43 27.19/8.43 with precondition: [Out=1,V1>=1,V>=1] 27.19/8.43 27.19/8.43 27.19/8.43 #### Cost of chains of start(V1,V): 27.19/8.43 * Chain [22]: 6*s(13)+5*s(17)+2*s(19)+2 27.19/8.43 Such that:s(19) =< V1-V+1 27.19/8.43 aux(6) =< V1 27.19/8.43 aux(7) =< V 27.19/8.43 s(17) =< aux(6) 27.19/8.43 s(13) =< aux(7) 27.19/8.43 s(19) =< aux(6) 27.19/8.43 27.19/8.43 with precondition: [V1>=0,V>=0] 27.19/8.43 27.19/8.43 * Chain [21]: 1 27.19/8.43 with precondition: [V=0,V1>=0] 27.19/8.43 27.19/8.43 27.19/8.43 Closed-form bounds of start(V1,V): 27.19/8.43 ------------------------------------- 27.19/8.43 * Chain [22] with precondition: [V1>=0,V>=0] 27.19/8.43 - Upper bound: 5*V1+6*V+2+nat(V1-V+1)*2 27.19/8.43 - Complexity: n 27.19/8.43 * Chain [21] with precondition: [V=0,V1>=0] 27.19/8.43 - Upper bound: 1 27.19/8.43 - Complexity: constant 27.19/8.43 27.19/8.43 ### Maximum cost of start(V1,V): 5*V1+6*V+1+nat(V1-V+1)*2+1 27.19/8.43 Asymptotic class: n 27.19/8.43 * Total analysis performed in 200 ms. 27.19/8.43 27.19/8.43 27.19/8.43 ---------------------------------------- 27.19/8.43 27.19/8.43 (12) 27.19/8.43 BOUNDS(1, n^1) 27.19/8.43 27.19/8.43 ---------------------------------------- 27.19/8.43 27.19/8.43 (13) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 27.19/8.43 Transformed a relative TRS into a decreasing-loop problem. 27.19/8.43 ---------------------------------------- 27.19/8.43 27.19/8.43 (14) 27.19/8.43 Obligation: 27.19/8.43 Analyzing the following TRS for decreasing loops: 27.19/8.43 27.19/8.43 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 27.19/8.43 27.19/8.43 27.19/8.43 The TRS R consists of the following rules: 27.19/8.43 27.19/8.43 minus(x, 0) -> x 27.19/8.43 minus(s(x), s(y)) -> minus(x, y) 27.19/8.43 le(0, y) -> true 27.19/8.43 le(s(x), 0) -> false 27.19/8.43 le(s(x), s(y)) -> le(x, y) 27.19/8.43 quot(0, s(y)) -> 0 27.19/8.43 quot(s(x), s(y)) -> s(quot(minus(s(x), s(y)), s(y))) 27.19/8.43 27.19/8.43 S is empty. 27.19/8.43 Rewrite Strategy: FULL 27.19/8.43 ---------------------------------------- 27.19/8.43 27.19/8.43 (15) DecreasingLoopProof (LOWER BOUND(ID)) 27.19/8.43 The following loop(s) give(s) rise to the lower bound Omega(n^1): 27.19/8.43 27.19/8.43 The rewrite sequence 27.19/8.43 27.19/8.43 minus(s(x), s(y)) ->^+ minus(x, y) 27.19/8.43 27.19/8.43 gives rise to a decreasing loop by considering the right hand sides subterm at position []. 27.19/8.43 27.19/8.43 The pumping substitution is [x / s(x), y / s(y)]. 27.19/8.43 27.19/8.43 The result substitution is [ ]. 27.19/8.43 27.19/8.43 27.19/8.43 27.19/8.43 27.19/8.43 ---------------------------------------- 27.19/8.43 27.19/8.43 (16) 27.19/8.43 Complex Obligation (BEST) 27.19/8.43 27.19/8.43 ---------------------------------------- 27.19/8.44 27.19/8.44 (17) 27.19/8.44 Obligation: 27.19/8.44 Proved the lower bound n^1 for the following obligation: 27.19/8.44 27.19/8.44 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 27.19/8.44 27.19/8.44 27.19/8.44 The TRS R consists of the following rules: 27.19/8.44 27.19/8.44 minus(x, 0) -> x 27.19/8.44 minus(s(x), s(y)) -> minus(x, y) 27.19/8.44 le(0, y) -> true 27.19/8.44 le(s(x), 0) -> false 27.19/8.44 le(s(x), s(y)) -> le(x, y) 27.19/8.44 quot(0, s(y)) -> 0 27.19/8.44 quot(s(x), s(y)) -> s(quot(minus(s(x), s(y)), s(y))) 27.19/8.44 27.19/8.44 S is empty. 27.19/8.44 Rewrite Strategy: FULL 27.19/8.44 ---------------------------------------- 27.19/8.44 27.19/8.44 (18) LowerBoundPropagationProof (FINISHED) 27.19/8.44 Propagated lower bound. 27.19/8.44 ---------------------------------------- 27.19/8.44 27.19/8.44 (19) 27.19/8.44 BOUNDS(n^1, INF) 27.19/8.44 27.19/8.44 ---------------------------------------- 27.19/8.44 27.19/8.44 (20) 27.19/8.44 Obligation: 27.19/8.44 Analyzing the following TRS for decreasing loops: 27.19/8.44 27.19/8.44 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 27.19/8.44 27.19/8.44 27.19/8.44 The TRS R consists of the following rules: 27.19/8.44 27.19/8.44 minus(x, 0) -> x 27.19/8.44 minus(s(x), s(y)) -> minus(x, y) 27.19/8.44 le(0, y) -> true 27.19/8.44 le(s(x), 0) -> false 27.19/8.44 le(s(x), s(y)) -> le(x, y) 27.19/8.44 quot(0, s(y)) -> 0 27.19/8.44 quot(s(x), s(y)) -> s(quot(minus(s(x), s(y)), s(y))) 27.19/8.44 27.19/8.44 S is empty. 27.19/8.44 Rewrite Strategy: FULL 27.34/11.06 EOF