3.11/1.60 WORST_CASE(Omega(n^1), O(n^1)) 3.11/1.60 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.11/1.60 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.11/1.60 3.11/1.60 3.11/1.60 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.11/1.60 3.11/1.60 (0) CpxTRS 3.11/1.60 (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] 3.11/1.60 (2) CpxTRS 3.11/1.60 (3) CpxTrsMatchBoundsTAProof [FINISHED, 0 ms] 3.11/1.60 (4) BOUNDS(1, n^1) 3.11/1.60 (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.11/1.60 (6) TRS for Loop Detection 3.11/1.60 (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.11/1.60 (8) BEST 3.11/1.60 (9) proven lower bound 3.11/1.60 (10) LowerBoundPropagationProof [FINISHED, 0 ms] 3.11/1.60 (11) BOUNDS(n^1, INF) 3.11/1.60 (12) TRS for Loop Detection 3.11/1.60 3.11/1.60 3.11/1.60 ---------------------------------------- 3.11/1.60 3.11/1.60 (0) 3.11/1.60 Obligation: 3.11/1.60 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.11/1.60 3.11/1.60 3.11/1.60 The TRS R consists of the following rules: 3.11/1.60 3.11/1.60 h(f(x, y)) -> f(f(a, h(h(y))), x) 3.11/1.60 3.11/1.60 S is empty. 3.11/1.60 Rewrite Strategy: FULL 3.11/1.60 ---------------------------------------- 3.11/1.60 3.11/1.60 (1) RelTrsToTrsProof (UPPER BOUND(ID)) 3.11/1.60 transformed relative TRS to TRS 3.11/1.60 ---------------------------------------- 3.11/1.60 3.11/1.60 (2) 3.11/1.60 Obligation: 3.11/1.60 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). 3.11/1.60 3.11/1.60 3.11/1.60 The TRS R consists of the following rules: 3.11/1.60 3.11/1.60 h(f(x, y)) -> f(f(a, h(h(y))), x) 3.11/1.60 3.11/1.60 S is empty. 3.11/1.60 Rewrite Strategy: FULL 3.11/1.60 ---------------------------------------- 3.11/1.60 3.11/1.60 (3) CpxTrsMatchBoundsTAProof (FINISHED) 3.11/1.60 A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. 3.11/1.60 3.11/1.60 The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: 3.11/1.60 final states : [1] 3.11/1.60 transitions: 3.11/1.60 f0(0, 0) -> 0 3.11/1.60 a0() -> 0 3.11/1.60 h0(0) -> 1 3.11/1.60 a1() -> 3 3.11/1.60 h1(0) -> 5 3.11/1.60 h1(5) -> 4 3.11/1.60 f1(3, 4) -> 2 3.11/1.60 f1(2, 0) -> 1 3.11/1.60 f1(2, 0) -> 5 3.11/1.60 a2() -> 7 3.11/1.60 h2(0) -> 9 3.11/1.60 h2(9) -> 8 3.11/1.60 f2(7, 8) -> 6 3.11/1.60 f2(6, 2) -> 4 3.11/1.60 f1(2, 0) -> 9 3.11/1.60 f2(6, 2) -> 8 3.11/1.60 3.11/1.60 ---------------------------------------- 3.11/1.60 3.11/1.60 (4) 3.11/1.60 BOUNDS(1, n^1) 3.11/1.60 3.11/1.60 ---------------------------------------- 3.11/1.60 3.11/1.60 (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.11/1.60 Transformed a relative TRS into a decreasing-loop problem. 3.11/1.60 ---------------------------------------- 3.11/1.60 3.11/1.60 (6) 3.11/1.60 Obligation: 3.11/1.60 Analyzing the following TRS for decreasing loops: 3.11/1.60 3.11/1.60 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.11/1.60 3.11/1.60 3.11/1.60 The TRS R consists of the following rules: 3.11/1.60 3.11/1.60 h(f(x, y)) -> f(f(a, h(h(y))), x) 3.11/1.60 3.11/1.60 S is empty. 3.11/1.60 Rewrite Strategy: FULL 3.11/1.60 ---------------------------------------- 3.11/1.60 3.11/1.60 (7) DecreasingLoopProof (LOWER BOUND(ID)) 3.11/1.60 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.11/1.60 3.11/1.60 The rewrite sequence 3.11/1.60 3.11/1.60 h(f(x, y)) ->^+ f(f(a, h(h(y))), x) 3.11/1.60 3.11/1.60 gives rise to a decreasing loop by considering the right hand sides subterm at position [0,1,0]. 3.11/1.60 3.11/1.60 The pumping substitution is [y / f(x, y)]. 3.11/1.60 3.11/1.60 The result substitution is [ ]. 3.11/1.60 3.11/1.60 3.11/1.60 3.11/1.60 3.11/1.60 ---------------------------------------- 3.11/1.60 3.11/1.60 (8) 3.11/1.60 Complex Obligation (BEST) 3.11/1.60 3.11/1.60 ---------------------------------------- 3.11/1.60 3.11/1.60 (9) 3.11/1.60 Obligation: 3.11/1.60 Proved the lower bound n^1 for the following obligation: 3.11/1.60 3.11/1.60 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.11/1.60 3.11/1.60 3.11/1.60 The TRS R consists of the following rules: 3.11/1.60 3.11/1.60 h(f(x, y)) -> f(f(a, h(h(y))), x) 3.11/1.60 3.11/1.60 S is empty. 3.11/1.60 Rewrite Strategy: FULL 3.11/1.60 ---------------------------------------- 3.11/1.60 3.11/1.60 (10) LowerBoundPropagationProof (FINISHED) 3.11/1.60 Propagated lower bound. 3.11/1.60 ---------------------------------------- 3.11/1.60 3.11/1.60 (11) 3.11/1.60 BOUNDS(n^1, INF) 3.11/1.60 3.11/1.60 ---------------------------------------- 3.11/1.60 3.11/1.60 (12) 3.11/1.60 Obligation: 3.11/1.60 Analyzing the following TRS for decreasing loops: 3.11/1.60 3.11/1.60 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.11/1.60 3.11/1.60 3.11/1.60 The TRS R consists of the following rules: 3.11/1.60 3.11/1.60 h(f(x, y)) -> f(f(a, h(h(y))), x) 3.11/1.60 3.11/1.60 S is empty. 3.11/1.60 Rewrite Strategy: FULL 3.48/1.65 EOF