3.63/1.71 WORST_CASE(Omega(n^1), O(n^1)) 3.63/1.72 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.63/1.72 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.63/1.72 3.63/1.72 3.63/1.72 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.63/1.72 3.63/1.72 (0) CpxTRS 3.63/1.72 (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] 3.63/1.72 (2) CpxTRS 3.63/1.72 (3) CpxTrsMatchBoundsTAProof [FINISHED, 32 ms] 3.63/1.72 (4) BOUNDS(1, n^1) 3.63/1.72 (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.63/1.72 (6) TRS for Loop Detection 3.63/1.72 (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.63/1.72 (8) BEST 3.63/1.72 (9) proven lower bound 3.63/1.72 (10) LowerBoundPropagationProof [FINISHED, 0 ms] 3.63/1.72 (11) BOUNDS(n^1, INF) 3.63/1.72 (12) TRS for Loop Detection 3.63/1.72 3.63/1.72 3.63/1.72 ---------------------------------------- 3.63/1.72 3.63/1.72 (0) 3.63/1.72 Obligation: 3.63/1.72 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.63/1.72 3.63/1.72 3.63/1.72 The TRS R consists of the following rules: 3.63/1.72 3.63/1.72 f(c(X, s(Y))) -> f(c(s(X), Y)) 3.63/1.72 g(c(s(X), Y)) -> f(c(X, s(Y))) 3.63/1.72 3.63/1.72 S is empty. 3.63/1.72 Rewrite Strategy: INNERMOST 3.63/1.72 ---------------------------------------- 3.63/1.72 3.63/1.72 (1) RelTrsToTrsProof (UPPER BOUND(ID)) 3.63/1.72 transformed relative TRS to TRS 3.63/1.72 ---------------------------------------- 3.63/1.72 3.63/1.72 (2) 3.63/1.72 Obligation: 3.63/1.72 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). 3.63/1.72 3.63/1.72 3.63/1.72 The TRS R consists of the following rules: 3.63/1.72 3.63/1.72 f(c(X, s(Y))) -> f(c(s(X), Y)) 3.63/1.72 g(c(s(X), Y)) -> f(c(X, s(Y))) 3.63/1.72 3.63/1.72 S is empty. 3.63/1.72 Rewrite Strategy: INNERMOST 3.63/1.72 ---------------------------------------- 3.63/1.72 3.63/1.72 (3) CpxTrsMatchBoundsTAProof (FINISHED) 3.63/1.72 A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. 3.63/1.72 3.63/1.72 The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: 3.63/1.72 final states : [1, 2] 3.63/1.72 transitions: 3.63/1.72 c0(0, 0) -> 0 3.63/1.72 s0(0) -> 0 3.63/1.72 f0(0) -> 1 3.63/1.72 g0(0) -> 2 3.63/1.72 s1(0) -> 4 3.63/1.72 c1(4, 0) -> 3 3.63/1.72 f1(3) -> 1 3.63/1.72 s1(0) -> 6 3.63/1.72 c1(0, 6) -> 5 3.63/1.72 f1(5) -> 2 3.63/1.72 s1(4) -> 4 3.63/1.72 s2(0) -> 8 3.63/1.72 c2(8, 0) -> 7 3.63/1.72 f2(7) -> 2 3.63/1.72 s1(8) -> 4 3.63/1.72 f1(3) -> 2 3.63/1.72 3.63/1.72 ---------------------------------------- 3.63/1.72 3.63/1.72 (4) 3.63/1.72 BOUNDS(1, n^1) 3.63/1.72 3.63/1.72 ---------------------------------------- 3.63/1.72 3.63/1.72 (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.63/1.72 Transformed a relative TRS into a decreasing-loop problem. 3.63/1.72 ---------------------------------------- 3.63/1.72 3.63/1.72 (6) 3.63/1.72 Obligation: 3.63/1.72 Analyzing the following TRS for decreasing loops: 3.63/1.72 3.63/1.72 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.63/1.72 3.63/1.72 3.63/1.72 The TRS R consists of the following rules: 3.63/1.72 3.63/1.72 f(c(X, s(Y))) -> f(c(s(X), Y)) 3.63/1.72 g(c(s(X), Y)) -> f(c(X, s(Y))) 3.63/1.72 3.63/1.72 S is empty. 3.63/1.72 Rewrite Strategy: INNERMOST 3.63/1.72 ---------------------------------------- 3.63/1.72 3.63/1.72 (7) DecreasingLoopProof (LOWER BOUND(ID)) 3.63/1.72 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.63/1.72 3.63/1.72 The rewrite sequence 3.63/1.72 3.63/1.72 f(c(X, s(Y))) ->^+ f(c(s(X), Y)) 3.63/1.72 3.63/1.72 gives rise to a decreasing loop by considering the right hand sides subterm at position []. 3.63/1.72 3.63/1.72 The pumping substitution is [Y / s(Y)]. 3.63/1.72 3.63/1.72 The result substitution is [X / s(X)]. 3.63/1.72 3.63/1.72 3.63/1.72 3.63/1.72 3.63/1.72 ---------------------------------------- 3.63/1.72 3.63/1.72 (8) 3.63/1.72 Complex Obligation (BEST) 3.63/1.72 3.63/1.72 ---------------------------------------- 3.63/1.72 3.63/1.72 (9) 3.63/1.72 Obligation: 3.63/1.72 Proved the lower bound n^1 for the following obligation: 3.63/1.72 3.63/1.72 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.63/1.72 3.63/1.72 3.63/1.72 The TRS R consists of the following rules: 3.63/1.72 3.63/1.72 f(c(X, s(Y))) -> f(c(s(X), Y)) 3.63/1.72 g(c(s(X), Y)) -> f(c(X, s(Y))) 3.63/1.72 3.63/1.72 S is empty. 3.63/1.72 Rewrite Strategy: INNERMOST 3.63/1.72 ---------------------------------------- 3.63/1.72 3.63/1.72 (10) LowerBoundPropagationProof (FINISHED) 3.63/1.72 Propagated lower bound. 3.63/1.72 ---------------------------------------- 3.63/1.72 3.63/1.72 (11) 3.63/1.72 BOUNDS(n^1, INF) 3.63/1.72 3.63/1.72 ---------------------------------------- 3.63/1.72 3.63/1.72 (12) 3.63/1.72 Obligation: 3.63/1.72 Analyzing the following TRS for decreasing loops: 3.63/1.72 3.63/1.72 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.63/1.72 3.63/1.72 3.63/1.72 The TRS R consists of the following rules: 3.63/1.72 3.63/1.72 f(c(X, s(Y))) -> f(c(s(X), Y)) 3.63/1.72 g(c(s(X), Y)) -> f(c(X, s(Y))) 3.63/1.72 3.63/1.72 S is empty. 3.63/1.72 Rewrite Strategy: INNERMOST 3.69/2.34 EOF