991.50/291.63 WORST_CASE(Omega(n^1), ?) 991.50/291.63 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 991.50/291.63 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 991.50/291.63 991.50/291.63 991.50/291.63 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 991.50/291.63 991.50/291.63 (0) CpxTRS 991.50/291.63 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 991.50/291.63 (2) TRS for Loop Detection 991.50/291.63 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 991.50/291.63 (4) BEST 991.50/291.63 (5) proven lower bound 991.50/291.63 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 991.50/291.63 (7) BOUNDS(n^1, INF) 991.50/291.63 (8) TRS for Loop Detection 991.50/291.63 991.50/291.63 991.50/291.63 ---------------------------------------- 991.50/291.63 991.50/291.63 (0) 991.50/291.63 Obligation: 991.50/291.63 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 991.50/291.63 991.50/291.63 991.50/291.63 The TRS R consists of the following rules: 991.50/291.63 991.50/291.63 app(nil, k) -> k 991.50/291.63 app(l, nil) -> l 991.50/291.63 app(cons(x, l), k) -> cons(x, app(l, k)) 991.50/291.63 sum(cons(x, nil)) -> cons(x, nil) 991.50/291.63 sum(cons(x, cons(y, l))) -> sum(cons(a(x, y, h), l)) 991.50/291.63 a(h, h, x) -> s(x) 991.50/291.63 a(x, s(y), h) -> a(x, y, s(h)) 991.50/291.63 a(x, s(y), s(z)) -> a(x, y, a(x, s(y), z)) 991.50/291.63 a(s(x), h, z) -> a(x, z, z) 991.50/291.63 991.50/291.63 S is empty. 991.50/291.63 Rewrite Strategy: INNERMOST 991.50/291.63 ---------------------------------------- 991.50/291.63 991.50/291.63 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 991.50/291.63 Transformed a relative TRS into a decreasing-loop problem. 991.50/291.63 ---------------------------------------- 991.50/291.63 991.50/291.63 (2) 991.50/291.63 Obligation: 991.50/291.63 Analyzing the following TRS for decreasing loops: 991.50/291.63 991.50/291.63 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 991.50/291.63 991.50/291.63 991.50/291.63 The TRS R consists of the following rules: 991.50/291.63 991.50/291.63 app(nil, k) -> k 991.50/291.63 app(l, nil) -> l 991.50/291.63 app(cons(x, l), k) -> cons(x, app(l, k)) 991.50/291.63 sum(cons(x, nil)) -> cons(x, nil) 991.50/291.63 sum(cons(x, cons(y, l))) -> sum(cons(a(x, y, h), l)) 991.50/291.63 a(h, h, x) -> s(x) 991.50/291.63 a(x, s(y), h) -> a(x, y, s(h)) 991.50/291.63 a(x, s(y), s(z)) -> a(x, y, a(x, s(y), z)) 991.50/291.63 a(s(x), h, z) -> a(x, z, z) 991.50/291.63 991.50/291.63 S is empty. 991.50/291.63 Rewrite Strategy: INNERMOST 991.50/291.63 ---------------------------------------- 991.50/291.63 991.50/291.63 (3) DecreasingLoopProof (LOWER BOUND(ID)) 991.50/291.63 The following loop(s) give(s) rise to the lower bound Omega(n^1): 991.50/291.63 991.50/291.63 The rewrite sequence 991.50/291.63 991.50/291.63 app(cons(x, l), k) ->^+ cons(x, app(l, k)) 991.50/291.63 991.50/291.63 gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. 991.50/291.63 991.50/291.63 The pumping substitution is [l / cons(x, l)]. 991.50/291.63 991.50/291.63 The result substitution is [ ]. 991.50/291.63 991.50/291.63 991.50/291.63 991.50/291.63 991.50/291.63 ---------------------------------------- 991.50/291.63 991.50/291.63 (4) 991.50/291.63 Complex Obligation (BEST) 991.50/291.63 991.50/291.63 ---------------------------------------- 991.50/291.63 991.50/291.63 (5) 991.50/291.63 Obligation: 991.50/291.63 Proved the lower bound n^1 for the following obligation: 991.50/291.63 991.50/291.63 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 991.50/291.63 991.50/291.63 991.50/291.63 The TRS R consists of the following rules: 991.50/291.63 991.50/291.63 app(nil, k) -> k 991.50/291.63 app(l, nil) -> l 991.50/291.63 app(cons(x, l), k) -> cons(x, app(l, k)) 991.50/291.63 sum(cons(x, nil)) -> cons(x, nil) 991.50/291.63 sum(cons(x, cons(y, l))) -> sum(cons(a(x, y, h), l)) 991.50/291.63 a(h, h, x) -> s(x) 991.50/291.63 a(x, s(y), h) -> a(x, y, s(h)) 991.50/291.63 a(x, s(y), s(z)) -> a(x, y, a(x, s(y), z)) 991.50/291.63 a(s(x), h, z) -> a(x, z, z) 991.50/291.63 991.50/291.63 S is empty. 991.50/291.63 Rewrite Strategy: INNERMOST 991.50/291.63 ---------------------------------------- 991.50/291.63 991.50/291.63 (6) LowerBoundPropagationProof (FINISHED) 991.50/291.63 Propagated lower bound. 991.50/291.63 ---------------------------------------- 991.50/291.63 991.50/291.63 (7) 991.50/291.63 BOUNDS(n^1, INF) 991.50/291.63 991.50/291.63 ---------------------------------------- 991.50/291.63 991.50/291.63 (8) 991.50/291.63 Obligation: 991.50/291.63 Analyzing the following TRS for decreasing loops: 991.50/291.63 991.50/291.63 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 991.50/291.63 991.50/291.63 991.50/291.63 The TRS R consists of the following rules: 991.50/291.63 991.50/291.63 app(nil, k) -> k 991.50/291.63 app(l, nil) -> l 991.50/291.63 app(cons(x, l), k) -> cons(x, app(l, k)) 991.50/291.63 sum(cons(x, nil)) -> cons(x, nil) 991.50/291.63 sum(cons(x, cons(y, l))) -> sum(cons(a(x, y, h), l)) 991.50/291.63 a(h, h, x) -> s(x) 991.50/291.63 a(x, s(y), h) -> a(x, y, s(h)) 991.50/291.63 a(x, s(y), s(z)) -> a(x, y, a(x, s(y), z)) 991.50/291.63 a(s(x), h, z) -> a(x, z, z) 991.50/291.63 991.50/291.63 S is empty. 991.50/291.63 Rewrite Strategy: INNERMOST 991.76/291.71 EOF