1103.75/291.53 WORST_CASE(Omega(n^2), ?) 1115.56/294.51 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 1115.56/294.51 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 1115.56/294.51 1115.56/294.51 1115.56/294.51 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). 1115.56/294.51 1115.56/294.51 (0) CpxTRS 1115.56/294.51 (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] 1115.56/294.51 (2) CpxTRS 1115.56/294.51 (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 1115.56/294.51 (4) typed CpxTrs 1115.56/294.51 (5) OrderProof [LOWER BOUND(ID), 0 ms] 1115.56/294.51 (6) typed CpxTrs 1115.56/294.51 (7) RewriteLemmaProof [LOWER BOUND(ID), 271 ms] 1115.56/294.51 (8) BEST 1115.56/294.51 (9) proven lower bound 1115.56/294.51 (10) LowerBoundPropagationProof [FINISHED, 0 ms] 1115.56/294.51 (11) BOUNDS(n^1, INF) 1115.56/294.51 (12) typed CpxTrs 1115.56/294.51 (13) RewriteLemmaProof [LOWER BOUND(ID), 27 ms] 1115.56/294.51 (14) typed CpxTrs 1115.56/294.51 (15) RewriteLemmaProof [LOWER BOUND(ID), 59 ms] 1115.56/294.51 (16) BEST 1115.56/294.51 (17) proven lower bound 1115.56/294.51 (18) LowerBoundPropagationProof [FINISHED, 0 ms] 1115.56/294.51 (19) BOUNDS(n^2, INF) 1115.56/294.51 (20) typed CpxTrs 1115.56/294.51 1115.56/294.51 1115.56/294.51 ---------------------------------------- 1115.56/294.51 1115.56/294.51 (0) 1115.56/294.51 Obligation: 1115.56/294.51 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). 1115.56/294.51 1115.56/294.51 1115.56/294.51 The TRS R consists of the following rules: 1115.56/294.51 1115.56/294.51 -(x, 0) -> x 1115.56/294.51 -(s(x), s(y)) -> -(x, y) 1115.56/294.51 +(0, y) -> y 1115.56/294.51 +(s(x), y) -> s(+(x, y)) 1115.56/294.51 *(x, 0) -> 0 1115.56/294.51 *(x, s(y)) -> +(x, *(x, y)) 1115.56/294.51 f(s(x), y) -> f(-(*(s(x), s(y)), s(*(s(x), y))), *(y, y)) 1115.56/294.51 1115.56/294.51 S is empty. 1115.56/294.51 Rewrite Strategy: INNERMOST 1115.56/294.51 ---------------------------------------- 1115.56/294.51 1115.56/294.51 (1) RenamingProof (BOTH BOUNDS(ID, ID)) 1115.56/294.51 Renamed function symbols to avoid clashes with predefined symbol. 1115.56/294.51 ---------------------------------------- 1115.56/294.51 1115.56/294.51 (2) 1115.56/294.51 Obligation: 1115.56/294.51 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). 1115.56/294.51 1115.56/294.51 1115.56/294.51 The TRS R consists of the following rules: 1115.56/294.51 1115.56/294.51 -(x, 0') -> x 1115.56/294.51 -(s(x), s(y)) -> -(x, y) 1115.56/294.51 +'(0', y) -> y 1115.56/294.51 +'(s(x), y) -> s(+'(x, y)) 1115.56/294.51 *'(x, 0') -> 0' 1115.56/294.51 *'(x, s(y)) -> +'(x, *'(x, y)) 1115.56/294.51 f(s(x), y) -> f(-(*'(s(x), s(y)), s(*'(s(x), y))), *'(y, y)) 1115.56/294.51 1115.56/294.51 S is empty. 1115.56/294.51 Rewrite Strategy: INNERMOST 1115.56/294.51 ---------------------------------------- 1115.56/294.51 1115.56/294.51 (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 1115.56/294.51 Infered types. 1115.56/294.51 ---------------------------------------- 1115.56/294.51 1115.56/294.51 (4) 1115.56/294.51 Obligation: 1115.56/294.51 Innermost TRS: 1115.56/294.51 Rules: 1115.56/294.51 -(x, 0') -> x 1115.56/294.51 -(s(x), s(y)) -> -(x, y) 1115.56/294.51 +'(0', y) -> y 1115.56/294.51 +'(s(x), y) -> s(+'(x, y)) 1115.56/294.51 *'(x, 0') -> 0' 1115.56/294.51 *'(x, s(y)) -> +'(x, *'(x, y)) 1115.56/294.51 f(s(x), y) -> f(-(*'(s(x), s(y)), s(*'(s(x), y))), *'(y, y)) 1115.56/294.51 1115.56/294.51 Types: 1115.56/294.51 - :: 0':s -> 0':s -> 0':s 1115.56/294.51 0' :: 0':s 1115.56/294.51 s :: 0':s -> 0':s 1115.56/294.51 +' :: 0':s -> 0':s -> 0':s 1115.56/294.51 *' :: 0':s -> 0':s -> 0':s 1115.56/294.51 f :: 0':s -> 0':s -> f 1115.56/294.51 hole_0':s1_0 :: 0':s 1115.56/294.51 hole_f2_0 :: f 1115.56/294.51 gen_0':s3_0 :: Nat -> 0':s 1115.56/294.51 1115.56/294.51 ---------------------------------------- 1115.56/294.51 1115.56/294.51 (5) OrderProof (LOWER BOUND(ID)) 1115.56/294.51 Heuristically decided to analyse the following defined symbols: 1115.56/294.51 -, +', *', f 1115.56/294.51 1115.56/294.51 They will be analysed ascendingly in the following order: 1115.56/294.51 - < f 1115.56/294.51 +' < *' 1115.56/294.51 *' < f 1115.56/294.51 1115.56/294.51 ---------------------------------------- 1115.56/294.51 1115.56/294.51 (6) 1115.56/294.51 Obligation: 1115.56/294.51 Innermost TRS: 1115.56/294.51 Rules: 1115.56/294.51 -(x, 0') -> x 1115.56/294.51 -(s(x), s(y)) -> -(x, y) 1115.56/294.51 +'(0', y) -> y 1115.56/294.51 +'(s(x), y) -> s(+'(x, y)) 1115.56/294.51 *'(x, 0') -> 0' 1115.56/294.51 *'(x, s(y)) -> +'(x, *'(x, y)) 1115.56/294.51 f(s(x), y) -> f(-(*'(s(x), s(y)), s(*'(s(x), y))), *'(y, y)) 1115.56/294.51 1115.56/294.51 Types: 1115.56/294.51 - :: 0':s -> 0':s -> 0':s 1115.56/294.51 0' :: 0':s 1115.56/294.51 s :: 0':s -> 0':s 1115.56/294.51 +' :: 0':s -> 0':s -> 0':s 1115.56/294.51 *' :: 0':s -> 0':s -> 0':s 1115.56/294.51 f :: 0':s -> 0':s -> f 1115.56/294.51 hole_0':s1_0 :: 0':s 1115.56/294.51 hole_f2_0 :: f 1115.56/294.51 gen_0':s3_0 :: Nat -> 0':s 1115.56/294.51 1115.56/294.51 1115.56/294.51 Generator Equations: 1115.56/294.51 gen_0':s3_0(0) <=> 0' 1115.56/294.51 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 1115.56/294.51 1115.56/294.51 1115.56/294.51 The following defined symbols remain to be analysed: 1115.56/294.51 -, +', *', f 1115.56/294.51 1115.56/294.51 They will be analysed ascendingly in the following order: 1115.56/294.51 - < f 1115.56/294.51 +' < *' 1115.56/294.51 *' < f 1115.56/294.51 1115.56/294.51 ---------------------------------------- 1115.56/294.51 1115.56/294.51 (7) RewriteLemmaProof (LOWER BOUND(ID)) 1115.56/294.51 Proved the following rewrite lemma: 1115.56/294.51 -(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(0), rt in Omega(1 + n5_0) 1115.56/294.51 1115.56/294.51 Induction Base: 1115.56/294.51 -(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) 1115.56/294.51 gen_0':s3_0(0) 1115.56/294.51 1115.56/294.51 Induction Step: 1115.56/294.51 -(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) ->_R^Omega(1) 1115.56/294.51 -(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) ->_IH 1115.56/294.51 gen_0':s3_0(0) 1115.56/294.51 1115.56/294.51 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 1115.56/294.51 ---------------------------------------- 1115.56/294.51 1115.56/294.51 (8) 1115.56/294.51 Complex Obligation (BEST) 1115.56/294.51 1115.56/294.51 ---------------------------------------- 1115.56/294.51 1115.56/294.51 (9) 1115.56/294.51 Obligation: 1115.56/294.51 Proved the lower bound n^1 for the following obligation: 1115.56/294.51 1115.56/294.51 Innermost TRS: 1115.56/294.51 Rules: 1115.56/294.51 -(x, 0') -> x 1115.56/294.51 -(s(x), s(y)) -> -(x, y) 1115.56/294.51 +'(0', y) -> y 1115.56/294.51 +'(s(x), y) -> s(+'(x, y)) 1115.56/294.51 *'(x, 0') -> 0' 1115.56/294.51 *'(x, s(y)) -> +'(x, *'(x, y)) 1115.56/294.51 f(s(x), y) -> f(-(*'(s(x), s(y)), s(*'(s(x), y))), *'(y, y)) 1115.56/294.51 1115.56/294.51 Types: 1115.56/294.51 - :: 0':s -> 0':s -> 0':s 1115.56/294.51 0' :: 0':s 1115.56/294.51 s :: 0':s -> 0':s 1115.56/294.51 +' :: 0':s -> 0':s -> 0':s 1115.56/294.51 *' :: 0':s -> 0':s -> 0':s 1115.56/294.51 f :: 0':s -> 0':s -> f 1115.56/294.51 hole_0':s1_0 :: 0':s 1115.56/294.51 hole_f2_0 :: f 1115.56/294.51 gen_0':s3_0 :: Nat -> 0':s 1115.56/294.51 1115.56/294.51 1115.56/294.51 Generator Equations: 1115.56/294.51 gen_0':s3_0(0) <=> 0' 1115.56/294.51 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 1115.56/294.51 1115.56/294.51 1115.56/294.51 The following defined symbols remain to be analysed: 1115.56/294.51 -, +', *', f 1115.56/294.51 1115.56/294.51 They will be analysed ascendingly in the following order: 1115.56/294.51 - < f 1115.56/294.51 +' < *' 1115.56/294.51 *' < f 1115.56/294.51 1115.56/294.51 ---------------------------------------- 1115.56/294.51 1115.56/294.51 (10) LowerBoundPropagationProof (FINISHED) 1115.56/294.51 Propagated lower bound. 1115.56/294.51 ---------------------------------------- 1115.56/294.51 1115.56/294.51 (11) 1115.56/294.51 BOUNDS(n^1, INF) 1115.56/294.51 1115.56/294.51 ---------------------------------------- 1115.56/294.51 1115.56/294.51 (12) 1115.56/294.51 Obligation: 1115.56/294.51 Innermost TRS: 1115.56/294.51 Rules: 1115.56/294.51 -(x, 0') -> x 1115.56/294.51 -(s(x), s(y)) -> -(x, y) 1115.56/294.51 +'(0', y) -> y 1115.56/294.51 +'(s(x), y) -> s(+'(x, y)) 1115.56/294.51 *'(x, 0') -> 0' 1115.56/294.51 *'(x, s(y)) -> +'(x, *'(x, y)) 1115.56/294.51 f(s(x), y) -> f(-(*'(s(x), s(y)), s(*'(s(x), y))), *'(y, y)) 1115.56/294.51 1115.56/294.51 Types: 1115.56/294.51 - :: 0':s -> 0':s -> 0':s 1115.56/294.51 0' :: 0':s 1115.56/294.51 s :: 0':s -> 0':s 1115.56/294.51 +' :: 0':s -> 0':s -> 0':s 1115.56/294.51 *' :: 0':s -> 0':s -> 0':s 1115.56/294.51 f :: 0':s -> 0':s -> f 1115.56/294.51 hole_0':s1_0 :: 0':s 1115.56/294.51 hole_f2_0 :: f 1115.56/294.51 gen_0':s3_0 :: Nat -> 0':s 1115.56/294.51 1115.56/294.51 1115.56/294.51 Lemmas: 1115.56/294.51 -(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(0), rt in Omega(1 + n5_0) 1115.56/294.51 1115.56/294.51 1115.56/294.51 Generator Equations: 1115.56/294.51 gen_0':s3_0(0) <=> 0' 1115.56/294.51 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 1115.56/294.51 1115.56/294.51 1115.56/294.51 The following defined symbols remain to be analysed: 1115.56/294.51 +', *', f 1115.56/294.51 1115.56/294.51 They will be analysed ascendingly in the following order: 1115.56/294.51 +' < *' 1115.56/294.51 *' < f 1115.56/294.51 1115.56/294.51 ---------------------------------------- 1115.56/294.51 1115.56/294.51 (13) RewriteLemmaProof (LOWER BOUND(ID)) 1115.56/294.51 Proved the following rewrite lemma: 1115.56/294.51 +'(gen_0':s3_0(n273_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n273_0, b)), rt in Omega(1 + n273_0) 1115.56/294.51 1115.56/294.51 Induction Base: 1115.56/294.51 +'(gen_0':s3_0(0), gen_0':s3_0(b)) ->_R^Omega(1) 1115.56/294.51 gen_0':s3_0(b) 1115.56/294.51 1115.56/294.51 Induction Step: 1115.56/294.51 +'(gen_0':s3_0(+(n273_0, 1)), gen_0':s3_0(b)) ->_R^Omega(1) 1115.56/294.51 s(+'(gen_0':s3_0(n273_0), gen_0':s3_0(b))) ->_IH 1115.56/294.51 s(gen_0':s3_0(+(b, c274_0))) 1115.56/294.51 1115.56/294.51 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 1115.56/294.51 ---------------------------------------- 1115.56/294.51 1115.56/294.51 (14) 1115.56/294.51 Obligation: 1115.56/294.51 Innermost TRS: 1115.56/294.51 Rules: 1115.56/294.51 -(x, 0') -> x 1115.56/294.51 -(s(x), s(y)) -> -(x, y) 1115.56/294.51 +'(0', y) -> y 1115.56/294.51 +'(s(x), y) -> s(+'(x, y)) 1115.56/294.51 *'(x, 0') -> 0' 1115.56/294.51 *'(x, s(y)) -> +'(x, *'(x, y)) 1115.56/294.51 f(s(x), y) -> f(-(*'(s(x), s(y)), s(*'(s(x), y))), *'(y, y)) 1115.56/294.51 1115.56/294.51 Types: 1115.56/294.51 - :: 0':s -> 0':s -> 0':s 1115.56/294.51 0' :: 0':s 1115.56/294.51 s :: 0':s -> 0':s 1115.56/294.51 +' :: 0':s -> 0':s -> 0':s 1115.56/294.51 *' :: 0':s -> 0':s -> 0':s 1115.56/294.51 f :: 0':s -> 0':s -> f 1115.56/294.51 hole_0':s1_0 :: 0':s 1115.56/294.51 hole_f2_0 :: f 1115.56/294.51 gen_0':s3_0 :: Nat -> 0':s 1115.56/294.51 1115.56/294.51 1115.56/294.51 Lemmas: 1115.56/294.51 -(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(0), rt in Omega(1 + n5_0) 1115.56/294.51 +'(gen_0':s3_0(n273_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n273_0, b)), rt in Omega(1 + n273_0) 1115.56/294.51 1115.56/294.51 1115.56/294.51 Generator Equations: 1115.56/294.51 gen_0':s3_0(0) <=> 0' 1115.56/294.51 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 1115.56/294.51 1115.56/294.51 1115.56/294.51 The following defined symbols remain to be analysed: 1115.56/294.51 *', f 1115.56/294.51 1115.56/294.51 They will be analysed ascendingly in the following order: 1115.56/294.51 *' < f 1115.56/294.51 1115.56/294.51 ---------------------------------------- 1115.56/294.51 1115.56/294.51 (15) RewriteLemmaProof (LOWER BOUND(ID)) 1115.56/294.51 Proved the following rewrite lemma: 1115.56/294.51 *'(gen_0':s3_0(a), gen_0':s3_0(n792_0)) -> gen_0':s3_0(*(n792_0, a)), rt in Omega(1 + a*n792_0 + n792_0) 1115.56/294.51 1115.56/294.51 Induction Base: 1115.56/294.51 *'(gen_0':s3_0(a), gen_0':s3_0(0)) ->_R^Omega(1) 1115.56/294.51 0' 1115.56/294.51 1115.56/294.51 Induction Step: 1115.56/294.51 *'(gen_0':s3_0(a), gen_0':s3_0(+(n792_0, 1))) ->_R^Omega(1) 1115.56/294.51 +'(gen_0':s3_0(a), *'(gen_0':s3_0(a), gen_0':s3_0(n792_0))) ->_IH 1115.56/294.51 +'(gen_0':s3_0(a), gen_0':s3_0(*(c793_0, a))) ->_L^Omega(1 + a) 1115.56/294.51 gen_0':s3_0(+(a, *(n792_0, a))) 1115.56/294.51 1115.56/294.51 We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). 1115.56/294.51 ---------------------------------------- 1115.56/294.51 1115.56/294.51 (16) 1115.56/294.51 Complex Obligation (BEST) 1115.56/294.51 1115.56/294.51 ---------------------------------------- 1115.56/294.51 1115.56/294.51 (17) 1115.56/294.51 Obligation: 1115.56/294.51 Proved the lower bound n^2 for the following obligation: 1115.56/294.51 1115.56/294.51 Innermost TRS: 1115.56/294.51 Rules: 1115.56/294.51 -(x, 0') -> x 1115.56/294.51 -(s(x), s(y)) -> -(x, y) 1115.56/294.51 +'(0', y) -> y 1115.56/294.51 +'(s(x), y) -> s(+'(x, y)) 1115.56/294.51 *'(x, 0') -> 0' 1115.56/294.51 *'(x, s(y)) -> +'(x, *'(x, y)) 1115.56/294.51 f(s(x), y) -> f(-(*'(s(x), s(y)), s(*'(s(x), y))), *'(y, y)) 1115.56/294.51 1115.56/294.51 Types: 1115.56/294.51 - :: 0':s -> 0':s -> 0':s 1115.56/294.51 0' :: 0':s 1115.56/294.51 s :: 0':s -> 0':s 1115.56/294.51 +' :: 0':s -> 0':s -> 0':s 1115.56/294.51 *' :: 0':s -> 0':s -> 0':s 1115.56/294.51 f :: 0':s -> 0':s -> f 1115.56/294.51 hole_0':s1_0 :: 0':s 1115.56/294.51 hole_f2_0 :: f 1115.56/294.51 gen_0':s3_0 :: Nat -> 0':s 1115.56/294.51 1115.56/294.51 1115.56/294.51 Lemmas: 1115.56/294.51 -(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(0), rt in Omega(1 + n5_0) 1115.56/294.51 +'(gen_0':s3_0(n273_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n273_0, b)), rt in Omega(1 + n273_0) 1115.56/294.51 1115.56/294.51 1115.56/294.51 Generator Equations: 1115.56/294.51 gen_0':s3_0(0) <=> 0' 1115.56/294.51 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 1115.56/294.51 1115.56/294.51 1115.56/294.51 The following defined symbols remain to be analysed: 1115.56/294.51 *', f 1115.56/294.51 1115.56/294.51 They will be analysed ascendingly in the following order: 1115.56/294.51 *' < f 1115.56/294.51 1115.56/294.51 ---------------------------------------- 1115.56/294.51 1115.56/294.51 (18) LowerBoundPropagationProof (FINISHED) 1115.56/294.51 Propagated lower bound. 1115.56/294.51 ---------------------------------------- 1115.56/294.51 1115.56/294.51 (19) 1115.56/294.51 BOUNDS(n^2, INF) 1115.56/294.51 1115.56/294.51 ---------------------------------------- 1115.56/294.51 1115.56/294.51 (20) 1115.56/294.51 Obligation: 1115.56/294.51 Innermost TRS: 1115.56/294.51 Rules: 1115.56/294.51 -(x, 0') -> x 1115.56/294.51 -(s(x), s(y)) -> -(x, y) 1115.56/294.51 +'(0', y) -> y 1115.56/294.51 +'(s(x), y) -> s(+'(x, y)) 1115.56/294.51 *'(x, 0') -> 0' 1115.56/294.51 *'(x, s(y)) -> +'(x, *'(x, y)) 1115.56/294.51 f(s(x), y) -> f(-(*'(s(x), s(y)), s(*'(s(x), y))), *'(y, y)) 1115.56/294.51 1115.56/294.51 Types: 1115.56/294.51 - :: 0':s -> 0':s -> 0':s 1115.56/294.51 0' :: 0':s 1115.56/294.51 s :: 0':s -> 0':s 1115.56/294.51 +' :: 0':s -> 0':s -> 0':s 1115.56/294.51 *' :: 0':s -> 0':s -> 0':s 1115.56/294.51 f :: 0':s -> 0':s -> f 1115.56/294.51 hole_0':s1_0 :: 0':s 1115.56/294.51 hole_f2_0 :: f 1115.56/294.51 gen_0':s3_0 :: Nat -> 0':s 1115.56/294.51 1115.56/294.51 1115.56/294.51 Lemmas: 1115.56/294.51 -(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(0), rt in Omega(1 + n5_0) 1115.56/294.51 +'(gen_0':s3_0(n273_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n273_0, b)), rt in Omega(1 + n273_0) 1115.56/294.51 *'(gen_0':s3_0(a), gen_0':s3_0(n792_0)) -> gen_0':s3_0(*(n792_0, a)), rt in Omega(1 + a*n792_0 + n792_0) 1115.56/294.51 1115.56/294.51 1115.56/294.51 Generator Equations: 1115.56/294.51 gen_0':s3_0(0) <=> 0' 1115.56/294.51 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 1115.56/294.51 1115.56/294.51 1115.56/294.51 The following defined symbols remain to be analysed: 1115.56/294.51 f 1115.62/294.57 EOF