332.36/291.47 WORST_CASE(Omega(n^1), O(n^2)) 332.36/291.49 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 332.36/291.49 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 332.36/291.49 332.36/291.49 332.36/291.49 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). 332.36/291.49 332.36/291.49 (0) CpxTRS 332.36/291.49 (1) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] 332.36/291.49 (2) CpxWeightedTrs 332.36/291.49 (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 332.36/291.49 (4) CpxTypedWeightedTrs 332.36/291.49 (5) CompletionProof [UPPER BOUND(ID), 0 ms] 332.36/291.49 (6) CpxTypedWeightedCompleteTrs 332.36/291.49 (7) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] 332.36/291.49 (8) CpxTypedWeightedCompleteTrs 332.36/291.49 (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] 332.36/291.49 (10) CpxRNTS 332.36/291.49 (11) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] 332.36/291.49 (12) CpxRNTS 332.36/291.49 (13) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] 332.36/291.49 (14) CpxRNTS 332.36/291.49 (15) ResultPropagationProof [UPPER BOUND(ID), 0 ms] 332.36/291.49 (16) CpxRNTS 332.36/291.49 (17) IntTrsBoundProof [UPPER BOUND(ID), 278 ms] 332.36/291.49 (18) CpxRNTS 332.36/291.49 (19) IntTrsBoundProof [UPPER BOUND(ID), 169 ms] 332.36/291.49 (20) CpxRNTS 332.36/291.49 (21) ResultPropagationProof [UPPER BOUND(ID), 0 ms] 332.36/291.49 (22) CpxRNTS 332.36/291.49 (23) IntTrsBoundProof [UPPER BOUND(ID), 2085 ms] 332.36/291.49 (24) CpxRNTS 332.36/291.49 (25) IntTrsBoundProof [UPPER BOUND(ID), 718 ms] 332.36/291.49 (26) CpxRNTS 332.36/291.49 (27) ResultPropagationProof [UPPER BOUND(ID), 0 ms] 332.36/291.49 (28) CpxRNTS 332.36/291.49 (29) IntTrsBoundProof [UPPER BOUND(ID), 704 ms] 332.36/291.49 (30) CpxRNTS 332.36/291.49 (31) IntTrsBoundProof [UPPER BOUND(ID), 167 ms] 332.36/291.49 (32) CpxRNTS 332.36/291.49 (33) ResultPropagationProof [UPPER BOUND(ID), 0 ms] 332.36/291.49 (34) CpxRNTS 332.36/291.49 (35) IntTrsBoundProof [UPPER BOUND(ID), 126 ms] 332.36/291.49 (36) CpxRNTS 332.36/291.49 (37) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] 332.36/291.49 (38) CpxRNTS 332.36/291.49 (39) FinalProof [FINISHED, 0 ms] 332.36/291.49 (40) BOUNDS(1, n^2) 332.36/291.49 (41) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 332.36/291.49 (42) TRS for Loop Detection 332.36/291.49 (43) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 332.36/291.49 (44) BEST 332.36/291.49 (45) proven lower bound 332.36/291.49 (46) LowerBoundPropagationProof [FINISHED, 0 ms] 332.36/291.49 (47) BOUNDS(n^1, INF) 332.36/291.49 (48) TRS for Loop Detection 332.36/291.49 332.36/291.49 332.36/291.49 ---------------------------------------- 332.36/291.49 332.36/291.49 (0) 332.36/291.49 Obligation: 332.36/291.49 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). 332.36/291.49 332.36/291.49 332.36/291.49 The TRS R consists of the following rules: 332.36/291.49 332.36/291.49 fold#3(insert_ord(x2), Nil) -> Nil 332.36/291.49 fold#3(insert_ord(x6), Cons(x4, x2)) -> insert_ord#2(x6, x4, fold#3(insert_ord(x6), x2)) 332.36/291.49 cond_insert_ord_x_ys_1(True, x3, x2, x1) -> Cons(x3, Cons(x2, x1)) 332.36/291.49 cond_insert_ord_x_ys_1(False, x0, x5, x2) -> Cons(x5, insert_ord#2(leq, x0, x2)) 332.36/291.49 insert_ord#2(leq, x2, Nil) -> Cons(x2, Nil) 332.36/291.49 insert_ord#2(leq, x6, Cons(x4, x2)) -> cond_insert_ord_x_ys_1(leq#2(x6, x4), x6, x4, x2) 332.36/291.49 leq#2(0, x8) -> True 332.36/291.49 leq#2(S(x12), 0) -> False 332.36/291.49 leq#2(S(x4), S(x2)) -> leq#2(x4, x2) 332.36/291.49 main(x3) -> fold#3(insert_ord(leq), x3) 332.36/291.49 332.36/291.49 S is empty. 332.36/291.49 Rewrite Strategy: INNERMOST 332.36/291.49 ---------------------------------------- 332.36/291.49 332.36/291.49 (1) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) 332.36/291.49 Transformed relative TRS to weighted TRS 332.36/291.49 ---------------------------------------- 332.36/291.49 332.36/291.49 (2) 332.36/291.49 Obligation: 332.36/291.49 The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). 332.36/291.49 332.36/291.49 332.36/291.49 The TRS R consists of the following rules: 332.36/291.49 332.36/291.49 fold#3(insert_ord(x2), Nil) -> Nil [1] 332.36/291.49 fold#3(insert_ord(x6), Cons(x4, x2)) -> insert_ord#2(x6, x4, fold#3(insert_ord(x6), x2)) [1] 332.36/291.49 cond_insert_ord_x_ys_1(True, x3, x2, x1) -> Cons(x3, Cons(x2, x1)) [1] 332.36/291.49 cond_insert_ord_x_ys_1(False, x0, x5, x2) -> Cons(x5, insert_ord#2(leq, x0, x2)) [1] 332.36/291.49 insert_ord#2(leq, x2, Nil) -> Cons(x2, Nil) [1] 332.36/291.49 insert_ord#2(leq, x6, Cons(x4, x2)) -> cond_insert_ord_x_ys_1(leq#2(x6, x4), x6, x4, x2) [1] 332.36/291.49 leq#2(0, x8) -> True [1] 332.36/291.49 leq#2(S(x12), 0) -> False [1] 332.36/291.49 leq#2(S(x4), S(x2)) -> leq#2(x4, x2) [1] 332.36/291.49 main(x3) -> fold#3(insert_ord(leq), x3) [1] 332.36/291.49 332.36/291.49 Rewrite Strategy: INNERMOST 332.36/291.49 ---------------------------------------- 332.36/291.49 332.36/291.49 (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 332.36/291.49 Infered types. 332.36/291.49 ---------------------------------------- 332.36/291.49 332.36/291.49 (4) 332.36/291.49 Obligation: 332.36/291.49 Runtime Complexity Weighted TRS with Types. 332.36/291.49 The TRS R consists of the following rules: 332.36/291.49 332.36/291.49 fold#3(insert_ord(x2), Nil) -> Nil [1] 332.36/291.49 fold#3(insert_ord(x6), Cons(x4, x2)) -> insert_ord#2(x6, x4, fold#3(insert_ord(x6), x2)) [1] 332.36/291.49 cond_insert_ord_x_ys_1(True, x3, x2, x1) -> Cons(x3, Cons(x2, x1)) [1] 332.36/291.49 cond_insert_ord_x_ys_1(False, x0, x5, x2) -> Cons(x5, insert_ord#2(leq, x0, x2)) [1] 332.36/291.49 insert_ord#2(leq, x2, Nil) -> Cons(x2, Nil) [1] 332.36/291.49 insert_ord#2(leq, x6, Cons(x4, x2)) -> cond_insert_ord_x_ys_1(leq#2(x6, x4), x6, x4, x2) [1] 332.36/291.49 leq#2(0, x8) -> True [1] 332.36/291.49 leq#2(S(x12), 0) -> False [1] 332.36/291.49 leq#2(S(x4), S(x2)) -> leq#2(x4, x2) [1] 332.36/291.49 main(x3) -> fold#3(insert_ord(leq), x3) [1] 332.36/291.49 332.36/291.49 The TRS has the following type information: 332.36/291.49 fold#3 :: insert_ord -> Nil:Cons -> Nil:Cons 332.36/291.49 insert_ord :: leq -> insert_ord 332.36/291.49 Nil :: Nil:Cons 332.36/291.49 Cons :: 0:S -> Nil:Cons -> Nil:Cons 332.36/291.49 insert_ord#2 :: leq -> 0:S -> Nil:Cons -> Nil:Cons 332.36/291.49 cond_insert_ord_x_ys_1 :: True:False -> 0:S -> 0:S -> Nil:Cons -> Nil:Cons 332.36/291.49 True :: True:False 332.36/291.49 False :: True:False 332.36/291.49 leq :: leq 332.36/291.49 leq#2 :: 0:S -> 0:S -> True:False 332.36/291.49 0 :: 0:S 332.36/291.49 S :: 0:S -> 0:S 332.36/291.49 main :: Nil:Cons -> Nil:Cons 332.36/291.49 332.36/291.49 Rewrite Strategy: INNERMOST 332.36/291.49 ---------------------------------------- 332.36/291.49 332.36/291.49 (5) CompletionProof (UPPER BOUND(ID)) 332.36/291.49 The transformation into a RNTS is sound, since: 332.36/291.49 332.36/291.49 (a) The obligation is a constructor system where every type has a constant constructor, 332.36/291.49 332.36/291.49 (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: 332.36/291.49 332.36/291.49 main_1 332.36/291.49 332.36/291.49 (c) The following functions are completely defined: 332.36/291.49 332.36/291.49 leq#2_2 332.36/291.49 fold#3_2 332.36/291.49 insert_ord#2_3 332.36/291.49 cond_insert_ord_x_ys_1_4 332.36/291.49 332.36/291.49 Due to the following rules being added: 332.36/291.49 332.36/291.49 fold#3(v0, v1) -> Nil [0] 332.36/291.49 332.36/291.49 And the following fresh constants: const 332.36/291.49 332.36/291.49 ---------------------------------------- 332.36/291.49 332.36/291.49 (6) 332.36/291.49 Obligation: 332.36/291.49 Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: 332.36/291.49 332.36/291.49 Runtime Complexity Weighted TRS with Types. 332.36/291.49 The TRS R consists of the following rules: 332.36/291.49 332.36/291.49 fold#3(insert_ord(x2), Nil) -> Nil [1] 332.36/291.49 fold#3(insert_ord(x6), Cons(x4, x2)) -> insert_ord#2(x6, x4, fold#3(insert_ord(x6), x2)) [1] 332.36/291.49 cond_insert_ord_x_ys_1(True, x3, x2, x1) -> Cons(x3, Cons(x2, x1)) [1] 332.36/291.49 cond_insert_ord_x_ys_1(False, x0, x5, x2) -> Cons(x5, insert_ord#2(leq, x0, x2)) [1] 332.36/291.49 insert_ord#2(leq, x2, Nil) -> Cons(x2, Nil) [1] 332.36/291.49 insert_ord#2(leq, x6, Cons(x4, x2)) -> cond_insert_ord_x_ys_1(leq#2(x6, x4), x6, x4, x2) [1] 332.36/291.49 leq#2(0, x8) -> True [1] 332.36/291.49 leq#2(S(x12), 0) -> False [1] 332.36/291.49 leq#2(S(x4), S(x2)) -> leq#2(x4, x2) [1] 332.36/291.49 main(x3) -> fold#3(insert_ord(leq), x3) [1] 332.36/291.49 fold#3(v0, v1) -> Nil [0] 332.36/291.49 332.36/291.49 The TRS has the following type information: 332.36/291.49 fold#3 :: insert_ord -> Nil:Cons -> Nil:Cons 332.36/291.49 insert_ord :: leq -> insert_ord 332.36/291.49 Nil :: Nil:Cons 332.36/291.49 Cons :: 0:S -> Nil:Cons -> Nil:Cons 332.36/291.49 insert_ord#2 :: leq -> 0:S -> Nil:Cons -> Nil:Cons 332.36/291.49 cond_insert_ord_x_ys_1 :: True:False -> 0:S -> 0:S -> Nil:Cons -> Nil:Cons 332.36/291.49 True :: True:False 332.36/291.49 False :: True:False 332.36/291.49 leq :: leq 332.36/291.49 leq#2 :: 0:S -> 0:S -> True:False 332.36/291.49 0 :: 0:S 332.36/291.49 S :: 0:S -> 0:S 332.36/291.49 main :: Nil:Cons -> Nil:Cons 332.36/291.49 const :: insert_ord 332.36/291.49 332.36/291.49 Rewrite Strategy: INNERMOST 332.36/291.49 ---------------------------------------- 332.36/291.49 332.36/291.49 (7) NarrowingProof (BOTH BOUNDS(ID, ID)) 332.36/291.49 Narrowed the inner basic terms of all right-hand sides by a single narrowing step. 332.36/291.49 ---------------------------------------- 332.36/291.49 332.36/291.49 (8) 332.36/291.49 Obligation: 332.36/291.49 Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: 332.36/291.49 332.36/291.49 Runtime Complexity Weighted TRS with Types. 332.36/291.49 The TRS R consists of the following rules: 332.36/291.49 332.36/291.49 fold#3(insert_ord(x2), Nil) -> Nil [1] 332.36/291.49 fold#3(insert_ord(x6), Cons(x4, Nil)) -> insert_ord#2(x6, x4, Nil) [2] 332.36/291.49 fold#3(insert_ord(x6), Cons(x4, Cons(x4', x2'))) -> insert_ord#2(x6, x4, insert_ord#2(x6, x4', fold#3(insert_ord(x6), x2'))) [2] 332.36/291.49 fold#3(insert_ord(x6), Cons(x4, x2)) -> insert_ord#2(x6, x4, Nil) [1] 332.36/291.49 cond_insert_ord_x_ys_1(True, x3, x2, x1) -> Cons(x3, Cons(x2, x1)) [1] 332.36/291.49 cond_insert_ord_x_ys_1(False, x0, x5, x2) -> Cons(x5, insert_ord#2(leq, x0, x2)) [1] 332.36/291.49 insert_ord#2(leq, x2, Nil) -> Cons(x2, Nil) [1] 332.36/291.49 insert_ord#2(leq, 0, Cons(x4, x2)) -> cond_insert_ord_x_ys_1(True, 0, x4, x2) [2] 332.36/291.49 insert_ord#2(leq, S(x12'), Cons(0, x2)) -> cond_insert_ord_x_ys_1(False, S(x12'), 0, x2) [2] 332.36/291.49 insert_ord#2(leq, S(x4''), Cons(S(x2''), x2)) -> cond_insert_ord_x_ys_1(leq#2(x4'', x2''), S(x4''), S(x2''), x2) [2] 332.36/291.49 leq#2(0, x8) -> True [1] 332.36/291.49 leq#2(S(x12), 0) -> False [1] 332.36/291.49 leq#2(S(x4), S(x2)) -> leq#2(x4, x2) [1] 332.36/291.49 main(x3) -> fold#3(insert_ord(leq), x3) [1] 332.36/291.49 fold#3(v0, v1) -> Nil [0] 332.36/291.49 332.36/291.49 The TRS has the following type information: 332.36/291.49 fold#3 :: insert_ord -> Nil:Cons -> Nil:Cons 332.36/291.49 insert_ord :: leq -> insert_ord 332.36/291.49 Nil :: Nil:Cons 332.36/291.49 Cons :: 0:S -> Nil:Cons -> Nil:Cons 332.36/291.49 insert_ord#2 :: leq -> 0:S -> Nil:Cons -> Nil:Cons 332.36/291.49 cond_insert_ord_x_ys_1 :: True:False -> 0:S -> 0:S -> Nil:Cons -> Nil:Cons 332.36/291.49 True :: True:False 332.36/291.49 False :: True:False 332.36/291.49 leq :: leq 332.36/291.49 leq#2 :: 0:S -> 0:S -> True:False 332.36/291.49 0 :: 0:S 332.36/291.49 S :: 0:S -> 0:S 332.36/291.49 main :: Nil:Cons -> Nil:Cons 332.36/291.49 const :: insert_ord 332.36/291.49 332.36/291.49 Rewrite Strategy: INNERMOST 332.36/291.49 ---------------------------------------- 332.36/291.49 332.36/291.49 (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) 332.36/291.49 Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. 332.36/291.49 The constant constructors are abstracted as follows: 332.36/291.49 332.36/291.49 Nil => 0 332.36/291.49 True => 1 332.36/291.49 False => 0 332.36/291.49 leq => 0 332.36/291.49 0 => 0 332.36/291.49 const => 0 332.36/291.49 332.36/291.49 ---------------------------------------- 332.36/291.49 332.36/291.49 (10) 332.36/291.49 Obligation: 332.36/291.49 Complexity RNTS consisting of the following rules: 332.36/291.49 332.36/291.49 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + x3 + (1 + x2 + x1) :|: x1 >= 0, z = 1, z' = x3, z1 = x1, z'' = x2, x3 >= 0, x2 >= 0 332.36/291.49 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + x5 + insert_ord#2(0, x0, x2) :|: x0 >= 0, x5 >= 0, z1 = x2, z'' = x5, z = 0, x2 >= 0, z' = x0 332.36/291.49 fold#3(z, z') -{ 2 }-> insert_ord#2(x6, x4, insert_ord#2(x6, x4', fold#3(1 + x6, x2'))) :|: x2' >= 0, x4 >= 0, z = 1 + x6, x6 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0 332.36/291.49 fold#3(z, z') -{ 2 }-> insert_ord#2(x6, x4, 0) :|: x4 >= 0, z = 1 + x6, x6 >= 0, z' = 1 + x4 + 0 332.36/291.49 fold#3(z, z') -{ 1 }-> insert_ord#2(x6, x4, 0) :|: x4 >= 0, z = 1 + x6, z' = 1 + x4 + x2, x6 >= 0, x2 >= 0 332.36/291.49 fold#3(z, z') -{ 1 }-> 0 :|: z = 1 + x2, x2 >= 0, z' = 0 332.36/291.49 fold#3(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 332.36/291.49 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(leq#2(x4'', x2''), 1 + x4'', 1 + x2'', x2) :|: x4'' >= 0, z'' = 1 + (1 + x2'') + x2, z' = 1 + x4'', z = 0, x2'' >= 0, x2 >= 0 332.36/291.49 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(1, 0, x4, x2) :|: x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0 332.36/291.49 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(0, 1 + x12', 0, x2) :|: z'' = 1 + 0 + x2, z' = 1 + x12', x12' >= 0, z = 0, x2 >= 0 332.36/291.49 insert_ord#2(z, z', z'') -{ 1 }-> 1 + x2 + 0 :|: z'' = 0, z' = x2, z = 0, x2 >= 0 332.36/291.49 leq#2(z, z') -{ 1 }-> leq#2(x4, x2) :|: x4 >= 0, z' = 1 + x2, z = 1 + x4, x2 >= 0 332.36/291.49 leq#2(z, z') -{ 1 }-> 1 :|: x8 >= 0, z = 0, z' = x8 332.36/291.49 leq#2(z, z') -{ 1 }-> 0 :|: z = 1 + x12, x12 >= 0, z' = 0 332.36/291.49 main(z) -{ 1 }-> fold#3(1 + 0, x3) :|: z = x3, x3 >= 0 332.36/291.49 332.36/291.49 332.36/291.49 ---------------------------------------- 332.36/291.49 332.36/291.49 (11) SimplificationProof (BOTH BOUNDS(ID, ID)) 332.36/291.49 Simplified the RNTS by moving equalities from the constraints into the right-hand sides. 332.36/291.49 ---------------------------------------- 332.36/291.49 332.36/291.49 (12) 332.36/291.49 Obligation: 332.36/291.49 Complexity RNTS consisting of the following rules: 332.36/291.49 332.36/291.49 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0 332.36/291.49 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z'' + insert_ord#2(0, z', z1) :|: z' >= 0, z'' >= 0, z = 0, z1 >= 0 332.36/291.49 fold#3(z, z') -{ 2 }-> insert_ord#2(z - 1, x4, insert_ord#2(z - 1, x4', fold#3(1 + (z - 1), x2'))) :|: x2' >= 0, x4 >= 0, z - 1 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0 332.36/291.49 fold#3(z, z') -{ 1 }-> insert_ord#2(z - 1, x4, 0) :|: x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0 332.36/291.49 fold#3(z, z') -{ 2 }-> insert_ord#2(z - 1, z' - 1, 0) :|: z' - 1 >= 0, z - 1 >= 0 332.36/291.49 fold#3(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 332.36/291.49 fold#3(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 332.36/291.49 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(leq#2(z' - 1, x2''), 1 + (z' - 1), 1 + x2'', x2) :|: z' - 1 >= 0, z'' = 1 + (1 + x2'') + x2, z = 0, x2'' >= 0, x2 >= 0 332.36/291.49 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(1, 0, x4, x2) :|: x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0 332.36/291.49 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(0, 1 + (z' - 1), 0, z'' - 1) :|: z' - 1 >= 0, z = 0, z'' - 1 >= 0 332.36/291.49 insert_ord#2(z, z', z'') -{ 1 }-> 1 + z' + 0 :|: z'' = 0, z = 0, z' >= 0 332.36/291.49 leq#2(z, z') -{ 1 }-> leq#2(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 332.36/291.49 leq#2(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 332.36/291.49 leq#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 332.36/291.49 main(z) -{ 1 }-> fold#3(1 + 0, z) :|: z >= 0 332.36/291.49 332.36/291.49 332.36/291.49 ---------------------------------------- 332.36/291.49 332.36/291.49 (13) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) 332.36/291.49 Found the following analysis order by SCC decomposition: 332.36/291.49 332.36/291.49 { leq#2 } 332.36/291.49 { cond_insert_ord_x_ys_1, insert_ord#2 } 332.36/291.49 { fold#3 } 332.36/291.49 { main } 332.36/291.49 332.36/291.49 ---------------------------------------- 332.36/291.49 332.36/291.49 (14) 332.36/291.49 Obligation: 332.36/291.49 Complexity RNTS consisting of the following rules: 332.36/291.49 332.36/291.49 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0 332.36/291.49 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z'' + insert_ord#2(0, z', z1) :|: z' >= 0, z'' >= 0, z = 0, z1 >= 0 332.36/291.49 fold#3(z, z') -{ 2 }-> insert_ord#2(z - 1, x4, insert_ord#2(z - 1, x4', fold#3(1 + (z - 1), x2'))) :|: x2' >= 0, x4 >= 0, z - 1 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0 332.36/291.49 fold#3(z, z') -{ 1 }-> insert_ord#2(z - 1, x4, 0) :|: x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0 332.36/291.49 fold#3(z, z') -{ 2 }-> insert_ord#2(z - 1, z' - 1, 0) :|: z' - 1 >= 0, z - 1 >= 0 332.36/291.49 fold#3(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 332.36/291.49 fold#3(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 332.36/291.49 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(leq#2(z' - 1, x2''), 1 + (z' - 1), 1 + x2'', x2) :|: z' - 1 >= 0, z'' = 1 + (1 + x2'') + x2, z = 0, x2'' >= 0, x2 >= 0 332.36/291.49 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(1, 0, x4, x2) :|: x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0 332.36/291.49 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(0, 1 + (z' - 1), 0, z'' - 1) :|: z' - 1 >= 0, z = 0, z'' - 1 >= 0 332.36/291.49 insert_ord#2(z, z', z'') -{ 1 }-> 1 + z' + 0 :|: z'' = 0, z = 0, z' >= 0 332.36/291.49 leq#2(z, z') -{ 1 }-> leq#2(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 332.36/291.49 leq#2(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 332.36/291.49 leq#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 332.36/291.49 main(z) -{ 1 }-> fold#3(1 + 0, z) :|: z >= 0 332.36/291.49 332.36/291.49 Function symbols to be analyzed: {leq#2}, {cond_insert_ord_x_ys_1,insert_ord#2}, {fold#3}, {main} 332.36/291.49 332.36/291.49 ---------------------------------------- 332.36/291.49 332.36/291.49 (15) ResultPropagationProof (UPPER BOUND(ID)) 332.36/291.49 Applied inner abstraction using the recently inferred runtime/size bounds where possible. 332.36/291.49 ---------------------------------------- 332.36/291.49 332.36/291.49 (16) 332.36/291.49 Obligation: 332.36/291.49 Complexity RNTS consisting of the following rules: 332.36/291.49 332.36/291.49 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0 332.36/291.49 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z'' + insert_ord#2(0, z', z1) :|: z' >= 0, z'' >= 0, z = 0, z1 >= 0 332.36/291.49 fold#3(z, z') -{ 2 }-> insert_ord#2(z - 1, x4, insert_ord#2(z - 1, x4', fold#3(1 + (z - 1), x2'))) :|: x2' >= 0, x4 >= 0, z - 1 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0 332.36/291.49 fold#3(z, z') -{ 1 }-> insert_ord#2(z - 1, x4, 0) :|: x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0 332.36/291.49 fold#3(z, z') -{ 2 }-> insert_ord#2(z - 1, z' - 1, 0) :|: z' - 1 >= 0, z - 1 >= 0 332.36/291.49 fold#3(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 332.36/291.49 fold#3(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 332.36/291.49 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(leq#2(z' - 1, x2''), 1 + (z' - 1), 1 + x2'', x2) :|: z' - 1 >= 0, z'' = 1 + (1 + x2'') + x2, z = 0, x2'' >= 0, x2 >= 0 332.36/291.49 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(1, 0, x4, x2) :|: x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0 332.36/291.49 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(0, 1 + (z' - 1), 0, z'' - 1) :|: z' - 1 >= 0, z = 0, z'' - 1 >= 0 332.36/291.49 insert_ord#2(z, z', z'') -{ 1 }-> 1 + z' + 0 :|: z'' = 0, z = 0, z' >= 0 332.36/291.49 leq#2(z, z') -{ 1 }-> leq#2(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 332.36/291.49 leq#2(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 332.36/291.49 leq#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 332.36/291.49 main(z) -{ 1 }-> fold#3(1 + 0, z) :|: z >= 0 332.36/291.49 332.36/291.49 Function symbols to be analyzed: {leq#2}, {cond_insert_ord_x_ys_1,insert_ord#2}, {fold#3}, {main} 332.36/291.49 332.36/291.49 ---------------------------------------- 332.36/291.49 332.36/291.49 (17) IntTrsBoundProof (UPPER BOUND(ID)) 332.36/291.49 332.36/291.49 Computed SIZE bound using CoFloCo for: leq#2 332.36/291.49 after applying outer abstraction to obtain an ITS, 332.36/291.49 resulting in: O(1) with polynomial bound: 1 332.36/291.49 332.36/291.49 ---------------------------------------- 332.36/291.49 332.36/291.49 (18) 332.36/291.49 Obligation: 332.36/291.49 Complexity RNTS consisting of the following rules: 332.36/291.49 332.36/291.49 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0 332.36/291.49 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z'' + insert_ord#2(0, z', z1) :|: z' >= 0, z'' >= 0, z = 0, z1 >= 0 332.36/291.49 fold#3(z, z') -{ 2 }-> insert_ord#2(z - 1, x4, insert_ord#2(z - 1, x4', fold#3(1 + (z - 1), x2'))) :|: x2' >= 0, x4 >= 0, z - 1 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0 332.36/291.49 fold#3(z, z') -{ 1 }-> insert_ord#2(z - 1, x4, 0) :|: x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0 332.36/291.49 fold#3(z, z') -{ 2 }-> insert_ord#2(z - 1, z' - 1, 0) :|: z' - 1 >= 0, z - 1 >= 0 332.36/291.49 fold#3(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 332.36/291.49 fold#3(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 332.36/291.49 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(leq#2(z' - 1, x2''), 1 + (z' - 1), 1 + x2'', x2) :|: z' - 1 >= 0, z'' = 1 + (1 + x2'') + x2, z = 0, x2'' >= 0, x2 >= 0 332.36/291.49 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(1, 0, x4, x2) :|: x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0 332.36/291.49 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(0, 1 + (z' - 1), 0, z'' - 1) :|: z' - 1 >= 0, z = 0, z'' - 1 >= 0 332.36/291.49 insert_ord#2(z, z', z'') -{ 1 }-> 1 + z' + 0 :|: z'' = 0, z = 0, z' >= 0 332.36/291.49 leq#2(z, z') -{ 1 }-> leq#2(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 332.36/291.49 leq#2(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 332.36/291.49 leq#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 332.36/291.49 main(z) -{ 1 }-> fold#3(1 + 0, z) :|: z >= 0 332.36/291.49 332.36/291.49 Function symbols to be analyzed: {leq#2}, {cond_insert_ord_x_ys_1,insert_ord#2}, {fold#3}, {main} 332.36/291.49 Previous analysis results are: 332.36/291.49 leq#2: runtime: ?, size: O(1) [1] 332.36/291.49 332.36/291.49 ---------------------------------------- 332.36/291.49 332.36/291.49 (19) IntTrsBoundProof (UPPER BOUND(ID)) 332.36/291.50 332.36/291.50 Computed RUNTIME bound using KoAT for: leq#2 332.36/291.50 after applying outer abstraction to obtain an ITS, 332.36/291.50 resulting in: O(n^1) with polynomial bound: 2 + z' 332.36/291.50 332.36/291.50 ---------------------------------------- 332.36/291.50 332.36/291.50 (20) 332.36/291.50 Obligation: 332.36/291.50 Complexity RNTS consisting of the following rules: 332.36/291.50 332.36/291.50 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0 332.36/291.50 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z'' + insert_ord#2(0, z', z1) :|: z' >= 0, z'' >= 0, z = 0, z1 >= 0 332.36/291.50 fold#3(z, z') -{ 2 }-> insert_ord#2(z - 1, x4, insert_ord#2(z - 1, x4', fold#3(1 + (z - 1), x2'))) :|: x2' >= 0, x4 >= 0, z - 1 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0 332.36/291.50 fold#3(z, z') -{ 1 }-> insert_ord#2(z - 1, x4, 0) :|: x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0 332.36/291.50 fold#3(z, z') -{ 2 }-> insert_ord#2(z - 1, z' - 1, 0) :|: z' - 1 >= 0, z - 1 >= 0 332.36/291.50 fold#3(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 332.36/291.50 fold#3(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 332.36/291.50 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(leq#2(z' - 1, x2''), 1 + (z' - 1), 1 + x2'', x2) :|: z' - 1 >= 0, z'' = 1 + (1 + x2'') + x2, z = 0, x2'' >= 0, x2 >= 0 332.36/291.50 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(1, 0, x4, x2) :|: x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0 332.36/291.50 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(0, 1 + (z' - 1), 0, z'' - 1) :|: z' - 1 >= 0, z = 0, z'' - 1 >= 0 332.36/291.50 insert_ord#2(z, z', z'') -{ 1 }-> 1 + z' + 0 :|: z'' = 0, z = 0, z' >= 0 332.36/291.50 leq#2(z, z') -{ 1 }-> leq#2(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 332.36/291.50 leq#2(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 332.36/291.50 leq#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 332.36/291.50 main(z) -{ 1 }-> fold#3(1 + 0, z) :|: z >= 0 332.36/291.50 332.36/291.50 Function symbols to be analyzed: {cond_insert_ord_x_ys_1,insert_ord#2}, {fold#3}, {main} 332.36/291.50 Previous analysis results are: 332.36/291.50 leq#2: runtime: O(n^1) [2 + z'], size: O(1) [1] 332.36/291.50 332.36/291.50 ---------------------------------------- 332.36/291.50 332.36/291.50 (21) ResultPropagationProof (UPPER BOUND(ID)) 332.36/291.50 Applied inner abstraction using the recently inferred runtime/size bounds where possible. 332.36/291.50 ---------------------------------------- 332.36/291.50 332.36/291.50 (22) 332.36/291.50 Obligation: 332.36/291.50 Complexity RNTS consisting of the following rules: 332.36/291.50 332.36/291.50 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0 332.36/291.50 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z'' + insert_ord#2(0, z', z1) :|: z' >= 0, z'' >= 0, z = 0, z1 >= 0 332.36/291.50 fold#3(z, z') -{ 2 }-> insert_ord#2(z - 1, x4, insert_ord#2(z - 1, x4', fold#3(1 + (z - 1), x2'))) :|: x2' >= 0, x4 >= 0, z - 1 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0 332.36/291.50 fold#3(z, z') -{ 1 }-> insert_ord#2(z - 1, x4, 0) :|: x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0 332.36/291.50 fold#3(z, z') -{ 2 }-> insert_ord#2(z - 1, z' - 1, 0) :|: z' - 1 >= 0, z - 1 >= 0 332.36/291.50 fold#3(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 332.36/291.50 fold#3(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 332.36/291.50 insert_ord#2(z, z', z'') -{ 4 + x2'' }-> cond_insert_ord_x_ys_1(s, 1 + (z' - 1), 1 + x2'', x2) :|: s >= 0, s <= 1, z' - 1 >= 0, z'' = 1 + (1 + x2'') + x2, z = 0, x2'' >= 0, x2 >= 0 332.36/291.50 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(1, 0, x4, x2) :|: x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0 332.36/291.50 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(0, 1 + (z' - 1), 0, z'' - 1) :|: z' - 1 >= 0, z = 0, z'' - 1 >= 0 332.36/291.50 insert_ord#2(z, z', z'') -{ 1 }-> 1 + z' + 0 :|: z'' = 0, z = 0, z' >= 0 332.36/291.50 leq#2(z, z') -{ 2 + z' }-> s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 332.36/291.50 leq#2(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 332.36/291.50 leq#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 332.36/291.50 main(z) -{ 1 }-> fold#3(1 + 0, z) :|: z >= 0 332.36/291.50 332.36/291.50 Function symbols to be analyzed: {cond_insert_ord_x_ys_1,insert_ord#2}, {fold#3}, {main} 332.36/291.50 Previous analysis results are: 332.36/291.50 leq#2: runtime: O(n^1) [2 + z'], size: O(1) [1] 332.36/291.50 332.36/291.50 ---------------------------------------- 332.36/291.50 332.36/291.50 (23) IntTrsBoundProof (UPPER BOUND(ID)) 332.36/291.50 332.36/291.50 Computed SIZE bound using CoFloCo for: cond_insert_ord_x_ys_1 332.36/291.50 after applying outer abstraction to obtain an ITS, 332.36/291.50 resulting in: O(n^1) with polynomial bound: 2 + z' + z'' + z1 332.36/291.50 332.36/291.50 Computed SIZE bound using CoFloCo for: insert_ord#2 332.36/291.50 after applying outer abstraction to obtain an ITS, 332.36/291.50 resulting in: O(n^1) with polynomial bound: 1 + z' + z'' 332.36/291.50 332.36/291.50 ---------------------------------------- 332.36/291.50 332.36/291.50 (24) 332.36/291.50 Obligation: 332.36/291.50 Complexity RNTS consisting of the following rules: 332.36/291.50 332.36/291.50 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0 332.36/291.50 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z'' + insert_ord#2(0, z', z1) :|: z' >= 0, z'' >= 0, z = 0, z1 >= 0 332.36/291.50 fold#3(z, z') -{ 2 }-> insert_ord#2(z - 1, x4, insert_ord#2(z - 1, x4', fold#3(1 + (z - 1), x2'))) :|: x2' >= 0, x4 >= 0, z - 1 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0 332.36/291.50 fold#3(z, z') -{ 1 }-> insert_ord#2(z - 1, x4, 0) :|: x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0 332.36/291.50 fold#3(z, z') -{ 2 }-> insert_ord#2(z - 1, z' - 1, 0) :|: z' - 1 >= 0, z - 1 >= 0 332.36/291.50 fold#3(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 332.36/291.50 fold#3(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 332.36/291.50 insert_ord#2(z, z', z'') -{ 4 + x2'' }-> cond_insert_ord_x_ys_1(s, 1 + (z' - 1), 1 + x2'', x2) :|: s >= 0, s <= 1, z' - 1 >= 0, z'' = 1 + (1 + x2'') + x2, z = 0, x2'' >= 0, x2 >= 0 332.36/291.50 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(1, 0, x4, x2) :|: x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0 332.36/291.50 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(0, 1 + (z' - 1), 0, z'' - 1) :|: z' - 1 >= 0, z = 0, z'' - 1 >= 0 332.36/291.50 insert_ord#2(z, z', z'') -{ 1 }-> 1 + z' + 0 :|: z'' = 0, z = 0, z' >= 0 332.36/291.50 leq#2(z, z') -{ 2 + z' }-> s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 332.36/291.50 leq#2(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 332.36/291.50 leq#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 332.36/291.50 main(z) -{ 1 }-> fold#3(1 + 0, z) :|: z >= 0 332.36/291.50 332.36/291.50 Function symbols to be analyzed: {cond_insert_ord_x_ys_1,insert_ord#2}, {fold#3}, {main} 332.36/291.50 Previous analysis results are: 332.36/291.50 leq#2: runtime: O(n^1) [2 + z'], size: O(1) [1] 332.36/291.50 cond_insert_ord_x_ys_1: runtime: ?, size: O(n^1) [2 + z' + z'' + z1] 332.36/291.50 insert_ord#2: runtime: ?, size: O(n^1) [1 + z' + z''] 332.36/291.50 332.36/291.50 ---------------------------------------- 332.36/291.50 332.36/291.50 (25) IntTrsBoundProof (UPPER BOUND(ID)) 332.36/291.50 332.36/291.50 Computed RUNTIME bound using CoFloCo for: cond_insert_ord_x_ys_1 332.36/291.50 after applying outer abstraction to obtain an ITS, 332.36/291.50 resulting in: O(n^1) with polynomial bound: 4 + 7*z1 332.36/291.50 332.36/291.50 Computed RUNTIME bound using CoFloCo for: insert_ord#2 332.36/291.50 after applying outer abstraction to obtain an ITS, 332.36/291.50 resulting in: O(n^1) with polynomial bound: 6 + 7*z'' 332.36/291.50 332.36/291.50 ---------------------------------------- 332.36/291.50 332.36/291.50 (26) 332.36/291.50 Obligation: 332.36/291.50 Complexity RNTS consisting of the following rules: 332.36/291.50 332.36/291.50 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0 332.36/291.50 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z'' + insert_ord#2(0, z', z1) :|: z' >= 0, z'' >= 0, z = 0, z1 >= 0 332.36/291.50 fold#3(z, z') -{ 2 }-> insert_ord#2(z - 1, x4, insert_ord#2(z - 1, x4', fold#3(1 + (z - 1), x2'))) :|: x2' >= 0, x4 >= 0, z - 1 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0 332.36/291.50 fold#3(z, z') -{ 1 }-> insert_ord#2(z - 1, x4, 0) :|: x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0 332.36/291.50 fold#3(z, z') -{ 2 }-> insert_ord#2(z - 1, z' - 1, 0) :|: z' - 1 >= 0, z - 1 >= 0 332.36/291.50 fold#3(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 332.36/291.50 fold#3(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 332.36/291.50 insert_ord#2(z, z', z'') -{ 4 + x2'' }-> cond_insert_ord_x_ys_1(s, 1 + (z' - 1), 1 + x2'', x2) :|: s >= 0, s <= 1, z' - 1 >= 0, z'' = 1 + (1 + x2'') + x2, z = 0, x2'' >= 0, x2 >= 0 332.36/291.50 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(1, 0, x4, x2) :|: x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0 332.36/291.50 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(0, 1 + (z' - 1), 0, z'' - 1) :|: z' - 1 >= 0, z = 0, z'' - 1 >= 0 332.36/291.50 insert_ord#2(z, z', z'') -{ 1 }-> 1 + z' + 0 :|: z'' = 0, z = 0, z' >= 0 332.36/291.50 leq#2(z, z') -{ 2 + z' }-> s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 332.36/291.50 leq#2(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 332.36/291.50 leq#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 332.36/291.50 main(z) -{ 1 }-> fold#3(1 + 0, z) :|: z >= 0 332.36/291.50 332.36/291.50 Function symbols to be analyzed: {fold#3}, {main} 332.36/291.50 Previous analysis results are: 332.36/291.50 leq#2: runtime: O(n^1) [2 + z'], size: O(1) [1] 332.36/291.50 cond_insert_ord_x_ys_1: runtime: O(n^1) [4 + 7*z1], size: O(n^1) [2 + z' + z'' + z1] 332.36/291.50 insert_ord#2: runtime: O(n^1) [6 + 7*z''], size: O(n^1) [1 + z' + z''] 332.36/291.50 332.36/291.50 ---------------------------------------- 332.36/291.50 332.36/291.50 (27) ResultPropagationProof (UPPER BOUND(ID)) 332.36/291.50 Applied inner abstraction using the recently inferred runtime/size bounds where possible. 332.36/291.50 ---------------------------------------- 332.36/291.50 332.36/291.50 (28) 332.36/291.50 Obligation: 332.36/291.50 Complexity RNTS consisting of the following rules: 332.36/291.50 332.36/291.50 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0 332.36/291.50 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 7 + 7*z1 }-> 1 + z'' + s2 :|: s2 >= 0, s2 <= z' + z1 + 1, z' >= 0, z'' >= 0, z = 0, z1 >= 0 332.36/291.50 fold#3(z, z') -{ 8 }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 0 + 1, z' - 1 >= 0, z - 1 >= 0 332.36/291.50 fold#3(z, z') -{ 7 }-> s1 :|: s1 >= 0, s1 <= x4 + 0 + 1, x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0 332.36/291.50 fold#3(z, z') -{ 2 }-> insert_ord#2(z - 1, x4, insert_ord#2(z - 1, x4', fold#3(1 + (z - 1), x2'))) :|: x2' >= 0, x4 >= 0, z - 1 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0 332.36/291.50 fold#3(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 332.36/291.50 fold#3(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 332.36/291.50 insert_ord#2(z, z', z'') -{ 6 + 7*x2 }-> s3 :|: s3 >= 0, s3 <= 0 + x4 + x2 + 2, x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0 332.36/291.50 insert_ord#2(z, z', z'') -{ -1 + 7*z'' }-> s4 :|: s4 >= 0, s4 <= 1 + (z' - 1) + 0 + (z'' - 1) + 2, z' - 1 >= 0, z = 0, z'' - 1 >= 0 332.36/291.50 insert_ord#2(z, z', z'') -{ 8 + 7*x2 + x2'' }-> s5 :|: s5 >= 0, s5 <= 1 + (z' - 1) + (1 + x2'') + x2 + 2, s >= 0, s <= 1, z' - 1 >= 0, z'' = 1 + (1 + x2'') + x2, z = 0, x2'' >= 0, x2 >= 0 332.36/291.50 insert_ord#2(z, z', z'') -{ 1 }-> 1 + z' + 0 :|: z'' = 0, z = 0, z' >= 0 332.36/291.50 leq#2(z, z') -{ 2 + z' }-> s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 332.36/291.50 leq#2(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 332.36/291.50 leq#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 332.36/291.50 main(z) -{ 1 }-> fold#3(1 + 0, z) :|: z >= 0 332.36/291.50 332.36/291.50 Function symbols to be analyzed: {fold#3}, {main} 332.36/291.50 Previous analysis results are: 332.36/291.50 leq#2: runtime: O(n^1) [2 + z'], size: O(1) [1] 332.36/291.50 cond_insert_ord_x_ys_1: runtime: O(n^1) [4 + 7*z1], size: O(n^1) [2 + z' + z'' + z1] 332.36/291.50 insert_ord#2: runtime: O(n^1) [6 + 7*z''], size: O(n^1) [1 + z' + z''] 332.36/291.50 332.36/291.50 ---------------------------------------- 332.36/291.50 332.36/291.50 (29) IntTrsBoundProof (UPPER BOUND(ID)) 332.36/291.50 332.36/291.50 Computed SIZE bound using CoFloCo for: fold#3 332.36/291.50 after applying outer abstraction to obtain an ITS, 332.36/291.50 resulting in: O(n^1) with polynomial bound: z' 332.36/291.50 332.36/291.50 ---------------------------------------- 332.36/291.50 332.36/291.50 (30) 332.36/291.50 Obligation: 332.36/291.50 Complexity RNTS consisting of the following rules: 332.36/291.50 332.36/291.50 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0 332.36/291.50 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 7 + 7*z1 }-> 1 + z'' + s2 :|: s2 >= 0, s2 <= z' + z1 + 1, z' >= 0, z'' >= 0, z = 0, z1 >= 0 332.36/291.50 fold#3(z, z') -{ 8 }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 0 + 1, z' - 1 >= 0, z - 1 >= 0 332.36/291.50 fold#3(z, z') -{ 7 }-> s1 :|: s1 >= 0, s1 <= x4 + 0 + 1, x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0 332.36/291.50 fold#3(z, z') -{ 2 }-> insert_ord#2(z - 1, x4, insert_ord#2(z - 1, x4', fold#3(1 + (z - 1), x2'))) :|: x2' >= 0, x4 >= 0, z - 1 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0 332.36/291.50 fold#3(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 332.36/291.50 fold#3(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 332.36/291.50 insert_ord#2(z, z', z'') -{ 6 + 7*x2 }-> s3 :|: s3 >= 0, s3 <= 0 + x4 + x2 + 2, x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0 332.36/291.50 insert_ord#2(z, z', z'') -{ -1 + 7*z'' }-> s4 :|: s4 >= 0, s4 <= 1 + (z' - 1) + 0 + (z'' - 1) + 2, z' - 1 >= 0, z = 0, z'' - 1 >= 0 332.36/291.50 insert_ord#2(z, z', z'') -{ 8 + 7*x2 + x2'' }-> s5 :|: s5 >= 0, s5 <= 1 + (z' - 1) + (1 + x2'') + x2 + 2, s >= 0, s <= 1, z' - 1 >= 0, z'' = 1 + (1 + x2'') + x2, z = 0, x2'' >= 0, x2 >= 0 332.36/291.50 insert_ord#2(z, z', z'') -{ 1 }-> 1 + z' + 0 :|: z'' = 0, z = 0, z' >= 0 332.36/291.50 leq#2(z, z') -{ 2 + z' }-> s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 332.36/291.50 leq#2(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 332.36/291.50 leq#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 332.36/291.50 main(z) -{ 1 }-> fold#3(1 + 0, z) :|: z >= 0 332.36/291.50 332.36/291.50 Function symbols to be analyzed: {fold#3}, {main} 332.36/291.50 Previous analysis results are: 332.36/291.50 leq#2: runtime: O(n^1) [2 + z'], size: O(1) [1] 332.36/291.50 cond_insert_ord_x_ys_1: runtime: O(n^1) [4 + 7*z1], size: O(n^1) [2 + z' + z'' + z1] 332.36/291.50 insert_ord#2: runtime: O(n^1) [6 + 7*z''], size: O(n^1) [1 + z' + z''] 332.36/291.50 fold#3: runtime: ?, size: O(n^1) [z'] 332.36/291.50 332.36/291.50 ---------------------------------------- 332.36/291.50 332.36/291.50 (31) IntTrsBoundProof (UPPER BOUND(ID)) 332.36/291.50 332.36/291.50 Computed RUNTIME bound using CoFloCo for: fold#3 332.36/291.50 after applying outer abstraction to obtain an ITS, 332.36/291.50 resulting in: O(n^2) with polynomial bound: 15 + 21*z' + 14*z'^2 332.36/291.50 332.36/291.50 ---------------------------------------- 332.36/291.50 332.36/291.50 (32) 332.36/291.50 Obligation: 332.36/291.50 Complexity RNTS consisting of the following rules: 332.36/291.50 332.36/291.50 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0 332.36/291.50 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 7 + 7*z1 }-> 1 + z'' + s2 :|: s2 >= 0, s2 <= z' + z1 + 1, z' >= 0, z'' >= 0, z = 0, z1 >= 0 332.36/291.50 fold#3(z, z') -{ 8 }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 0 + 1, z' - 1 >= 0, z - 1 >= 0 332.36/291.50 fold#3(z, z') -{ 7 }-> s1 :|: s1 >= 0, s1 <= x4 + 0 + 1, x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0 332.36/291.50 fold#3(z, z') -{ 2 }-> insert_ord#2(z - 1, x4, insert_ord#2(z - 1, x4', fold#3(1 + (z - 1), x2'))) :|: x2' >= 0, x4 >= 0, z - 1 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0 332.36/291.50 fold#3(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 332.36/291.50 fold#3(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 332.36/291.50 insert_ord#2(z, z', z'') -{ 6 + 7*x2 }-> s3 :|: s3 >= 0, s3 <= 0 + x4 + x2 + 2, x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0 332.36/291.50 insert_ord#2(z, z', z'') -{ -1 + 7*z'' }-> s4 :|: s4 >= 0, s4 <= 1 + (z' - 1) + 0 + (z'' - 1) + 2, z' - 1 >= 0, z = 0, z'' - 1 >= 0 332.36/291.50 insert_ord#2(z, z', z'') -{ 8 + 7*x2 + x2'' }-> s5 :|: s5 >= 0, s5 <= 1 + (z' - 1) + (1 + x2'') + x2 + 2, s >= 0, s <= 1, z' - 1 >= 0, z'' = 1 + (1 + x2'') + x2, z = 0, x2'' >= 0, x2 >= 0 332.36/291.50 insert_ord#2(z, z', z'') -{ 1 }-> 1 + z' + 0 :|: z'' = 0, z = 0, z' >= 0 332.36/291.50 leq#2(z, z') -{ 2 + z' }-> s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 332.36/291.50 leq#2(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 332.36/291.50 leq#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 332.36/291.50 main(z) -{ 1 }-> fold#3(1 + 0, z) :|: z >= 0 332.36/291.50 332.36/291.50 Function symbols to be analyzed: {main} 332.36/291.50 Previous analysis results are: 332.36/291.50 leq#2: runtime: O(n^1) [2 + z'], size: O(1) [1] 332.36/291.50 cond_insert_ord_x_ys_1: runtime: O(n^1) [4 + 7*z1], size: O(n^1) [2 + z' + z'' + z1] 332.36/291.50 insert_ord#2: runtime: O(n^1) [6 + 7*z''], size: O(n^1) [1 + z' + z''] 332.36/291.50 fold#3: runtime: O(n^2) [15 + 21*z' + 14*z'^2], size: O(n^1) [z'] 332.36/291.50 332.36/291.50 ---------------------------------------- 332.36/291.50 332.36/291.50 (33) ResultPropagationProof (UPPER BOUND(ID)) 332.36/291.50 Applied inner abstraction using the recently inferred runtime/size bounds where possible. 332.36/291.50 ---------------------------------------- 332.36/291.50 332.36/291.50 (34) 332.36/291.50 Obligation: 332.36/291.50 Complexity RNTS consisting of the following rules: 332.36/291.50 332.36/291.50 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0 332.36/291.50 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 7 + 7*z1 }-> 1 + z'' + s2 :|: s2 >= 0, s2 <= z' + z1 + 1, z' >= 0, z'' >= 0, z = 0, z1 >= 0 332.36/291.50 fold#3(z, z') -{ 8 }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 0 + 1, z' - 1 >= 0, z - 1 >= 0 332.36/291.50 fold#3(z, z') -{ 7 }-> s1 :|: s1 >= 0, s1 <= x4 + 0 + 1, x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0 332.36/291.50 fold#3(z, z') -{ 29 + 7*s6 + 7*s7 + 21*x2' + 14*x2'^2 }-> s8 :|: s6 >= 0, s6 <= x2', s7 >= 0, s7 <= x4' + s6 + 1, s8 >= 0, s8 <= x4 + s7 + 1, x2' >= 0, x4 >= 0, z - 1 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0 332.36/291.50 fold#3(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 332.36/291.50 fold#3(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 332.36/291.50 insert_ord#2(z, z', z'') -{ 6 + 7*x2 }-> s3 :|: s3 >= 0, s3 <= 0 + x4 + x2 + 2, x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0 332.36/291.50 insert_ord#2(z, z', z'') -{ -1 + 7*z'' }-> s4 :|: s4 >= 0, s4 <= 1 + (z' - 1) + 0 + (z'' - 1) + 2, z' - 1 >= 0, z = 0, z'' - 1 >= 0 332.36/291.50 insert_ord#2(z, z', z'') -{ 8 + 7*x2 + x2'' }-> s5 :|: s5 >= 0, s5 <= 1 + (z' - 1) + (1 + x2'') + x2 + 2, s >= 0, s <= 1, z' - 1 >= 0, z'' = 1 + (1 + x2'') + x2, z = 0, x2'' >= 0, x2 >= 0 332.36/291.50 insert_ord#2(z, z', z'') -{ 1 }-> 1 + z' + 0 :|: z'' = 0, z = 0, z' >= 0 332.36/291.50 leq#2(z, z') -{ 2 + z' }-> s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 332.36/291.50 leq#2(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 332.36/291.50 leq#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 332.36/291.50 main(z) -{ 16 + 21*z + 14*z^2 }-> s9 :|: s9 >= 0, s9 <= z, z >= 0 332.36/291.50 332.36/291.50 Function symbols to be analyzed: {main} 332.36/291.50 Previous analysis results are: 332.36/291.50 leq#2: runtime: O(n^1) [2 + z'], size: O(1) [1] 332.36/291.50 cond_insert_ord_x_ys_1: runtime: O(n^1) [4 + 7*z1], size: O(n^1) [2 + z' + z'' + z1] 332.36/291.50 insert_ord#2: runtime: O(n^1) [6 + 7*z''], size: O(n^1) [1 + z' + z''] 332.36/291.50 fold#3: runtime: O(n^2) [15 + 21*z' + 14*z'^2], size: O(n^1) [z'] 332.36/291.50 332.36/291.50 ---------------------------------------- 332.36/291.50 332.36/291.50 (35) IntTrsBoundProof (UPPER BOUND(ID)) 332.36/291.50 332.36/291.50 Computed SIZE bound using CoFloCo for: main 332.36/291.50 after applying outer abstraction to obtain an ITS, 332.36/291.50 resulting in: O(n^1) with polynomial bound: z 332.36/291.50 332.36/291.50 ---------------------------------------- 332.36/291.50 332.36/291.50 (36) 332.36/291.50 Obligation: 332.36/291.50 Complexity RNTS consisting of the following rules: 332.36/291.50 332.36/291.50 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0 332.36/291.50 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 7 + 7*z1 }-> 1 + z'' + s2 :|: s2 >= 0, s2 <= z' + z1 + 1, z' >= 0, z'' >= 0, z = 0, z1 >= 0 332.36/291.50 fold#3(z, z') -{ 8 }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 0 + 1, z' - 1 >= 0, z - 1 >= 0 332.36/291.50 fold#3(z, z') -{ 7 }-> s1 :|: s1 >= 0, s1 <= x4 + 0 + 1, x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0 332.36/291.50 fold#3(z, z') -{ 29 + 7*s6 + 7*s7 + 21*x2' + 14*x2'^2 }-> s8 :|: s6 >= 0, s6 <= x2', s7 >= 0, s7 <= x4' + s6 + 1, s8 >= 0, s8 <= x4 + s7 + 1, x2' >= 0, x4 >= 0, z - 1 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0 332.36/291.50 fold#3(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 332.36/291.50 fold#3(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 332.36/291.50 insert_ord#2(z, z', z'') -{ 6 + 7*x2 }-> s3 :|: s3 >= 0, s3 <= 0 + x4 + x2 + 2, x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0 332.36/291.50 insert_ord#2(z, z', z'') -{ -1 + 7*z'' }-> s4 :|: s4 >= 0, s4 <= 1 + (z' - 1) + 0 + (z'' - 1) + 2, z' - 1 >= 0, z = 0, z'' - 1 >= 0 332.36/291.50 insert_ord#2(z, z', z'') -{ 8 + 7*x2 + x2'' }-> s5 :|: s5 >= 0, s5 <= 1 + (z' - 1) + (1 + x2'') + x2 + 2, s >= 0, s <= 1, z' - 1 >= 0, z'' = 1 + (1 + x2'') + x2, z = 0, x2'' >= 0, x2 >= 0 332.36/291.50 insert_ord#2(z, z', z'') -{ 1 }-> 1 + z' + 0 :|: z'' = 0, z = 0, z' >= 0 332.36/291.50 leq#2(z, z') -{ 2 + z' }-> s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 332.36/291.50 leq#2(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 332.36/291.50 leq#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 332.36/291.50 main(z) -{ 16 + 21*z + 14*z^2 }-> s9 :|: s9 >= 0, s9 <= z, z >= 0 332.36/291.50 332.36/291.50 Function symbols to be analyzed: {main} 332.36/291.50 Previous analysis results are: 332.36/291.50 leq#2: runtime: O(n^1) [2 + z'], size: O(1) [1] 332.36/291.50 cond_insert_ord_x_ys_1: runtime: O(n^1) [4 + 7*z1], size: O(n^1) [2 + z' + z'' + z1] 332.36/291.50 insert_ord#2: runtime: O(n^1) [6 + 7*z''], size: O(n^1) [1 + z' + z''] 332.36/291.50 fold#3: runtime: O(n^2) [15 + 21*z' + 14*z'^2], size: O(n^1) [z'] 332.36/291.50 main: runtime: ?, size: O(n^1) [z] 332.36/291.50 332.36/291.50 ---------------------------------------- 332.36/291.50 332.36/291.50 (37) IntTrsBoundProof (UPPER BOUND(ID)) 332.36/291.50 332.36/291.50 Computed RUNTIME bound using KoAT for: main 332.36/291.50 after applying outer abstraction to obtain an ITS, 332.36/291.50 resulting in: O(n^2) with polynomial bound: 16 + 21*z + 14*z^2 332.36/291.50 332.36/291.50 ---------------------------------------- 332.36/291.50 332.36/291.50 (38) 332.36/291.50 Obligation: 332.36/291.50 Complexity RNTS consisting of the following rules: 332.36/291.50 332.36/291.50 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0 332.36/291.50 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 7 + 7*z1 }-> 1 + z'' + s2 :|: s2 >= 0, s2 <= z' + z1 + 1, z' >= 0, z'' >= 0, z = 0, z1 >= 0 332.36/291.50 fold#3(z, z') -{ 8 }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 0 + 1, z' - 1 >= 0, z - 1 >= 0 332.36/291.50 fold#3(z, z') -{ 7 }-> s1 :|: s1 >= 0, s1 <= x4 + 0 + 1, x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0 332.36/291.50 fold#3(z, z') -{ 29 + 7*s6 + 7*s7 + 21*x2' + 14*x2'^2 }-> s8 :|: s6 >= 0, s6 <= x2', s7 >= 0, s7 <= x4' + s6 + 1, s8 >= 0, s8 <= x4 + s7 + 1, x2' >= 0, x4 >= 0, z - 1 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0 332.36/291.50 fold#3(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 332.36/291.50 fold#3(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 332.36/291.50 insert_ord#2(z, z', z'') -{ 6 + 7*x2 }-> s3 :|: s3 >= 0, s3 <= 0 + x4 + x2 + 2, x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0 332.36/291.50 insert_ord#2(z, z', z'') -{ -1 + 7*z'' }-> s4 :|: s4 >= 0, s4 <= 1 + (z' - 1) + 0 + (z'' - 1) + 2, z' - 1 >= 0, z = 0, z'' - 1 >= 0 332.36/291.50 insert_ord#2(z, z', z'') -{ 8 + 7*x2 + x2'' }-> s5 :|: s5 >= 0, s5 <= 1 + (z' - 1) + (1 + x2'') + x2 + 2, s >= 0, s <= 1, z' - 1 >= 0, z'' = 1 + (1 + x2'') + x2, z = 0, x2'' >= 0, x2 >= 0 332.36/291.50 insert_ord#2(z, z', z'') -{ 1 }-> 1 + z' + 0 :|: z'' = 0, z = 0, z' >= 0 332.36/291.50 leq#2(z, z') -{ 2 + z' }-> s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 332.36/291.50 leq#2(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 332.36/291.50 leq#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 332.36/291.50 main(z) -{ 16 + 21*z + 14*z^2 }-> s9 :|: s9 >= 0, s9 <= z, z >= 0 332.36/291.50 332.36/291.50 Function symbols to be analyzed: 332.36/291.50 Previous analysis results are: 332.36/291.50 leq#2: runtime: O(n^1) [2 + z'], size: O(1) [1] 332.36/291.50 cond_insert_ord_x_ys_1: runtime: O(n^1) [4 + 7*z1], size: O(n^1) [2 + z' + z'' + z1] 332.36/291.50 insert_ord#2: runtime: O(n^1) [6 + 7*z''], size: O(n^1) [1 + z' + z''] 332.36/291.50 fold#3: runtime: O(n^2) [15 + 21*z' + 14*z'^2], size: O(n^1) [z'] 332.36/291.50 main: runtime: O(n^2) [16 + 21*z + 14*z^2], size: O(n^1) [z] 332.36/291.50 332.36/291.50 ---------------------------------------- 332.36/291.50 332.36/291.50 (39) FinalProof (FINISHED) 332.36/291.50 Computed overall runtime complexity 332.36/291.50 ---------------------------------------- 332.36/291.50 332.36/291.50 (40) 332.36/291.50 BOUNDS(1, n^2) 332.36/291.50 332.36/291.50 ---------------------------------------- 332.36/291.50 332.36/291.50 (41) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 332.36/291.50 Transformed a relative TRS into a decreasing-loop problem. 332.36/291.50 ---------------------------------------- 332.36/291.50 332.36/291.50 (42) 332.36/291.50 Obligation: 332.36/291.50 Analyzing the following TRS for decreasing loops: 332.36/291.50 332.36/291.50 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). 332.36/291.50 332.36/291.50 332.36/291.50 The TRS R consists of the following rules: 332.36/291.50 332.36/291.50 fold#3(insert_ord(x2), Nil) -> Nil 332.36/291.50 fold#3(insert_ord(x6), Cons(x4, x2)) -> insert_ord#2(x6, x4, fold#3(insert_ord(x6), x2)) 332.36/291.50 cond_insert_ord_x_ys_1(True, x3, x2, x1) -> Cons(x3, Cons(x2, x1)) 332.36/291.50 cond_insert_ord_x_ys_1(False, x0, x5, x2) -> Cons(x5, insert_ord#2(leq, x0, x2)) 332.36/291.50 insert_ord#2(leq, x2, Nil) -> Cons(x2, Nil) 332.36/291.50 insert_ord#2(leq, x6, Cons(x4, x2)) -> cond_insert_ord_x_ys_1(leq#2(x6, x4), x6, x4, x2) 332.36/291.50 leq#2(0, x8) -> True 332.36/291.50 leq#2(S(x12), 0) -> False 332.36/291.50 leq#2(S(x4), S(x2)) -> leq#2(x4, x2) 332.36/291.50 main(x3) -> fold#3(insert_ord(leq), x3) 332.36/291.50 332.36/291.50 S is empty. 332.36/291.50 Rewrite Strategy: INNERMOST 332.36/291.50 ---------------------------------------- 332.36/291.50 332.36/291.50 (43) DecreasingLoopProof (LOWER BOUND(ID)) 332.36/291.50 The following loop(s) give(s) rise to the lower bound Omega(n^1): 332.36/291.50 332.36/291.50 The rewrite sequence 332.36/291.50 332.36/291.50 leq#2(S(x4), S(x2)) ->^+ leq#2(x4, x2) 332.36/291.50 332.36/291.50 gives rise to a decreasing loop by considering the right hand sides subterm at position []. 332.36/291.50 332.36/291.50 The pumping substitution is [x4 / S(x4), x2 / S(x2)]. 332.36/291.50 332.36/291.50 The result substitution is [ ]. 332.36/291.50 332.36/291.50 332.36/291.50 332.36/291.50 332.36/291.50 ---------------------------------------- 332.36/291.50 332.36/291.50 (44) 332.36/291.50 Complex Obligation (BEST) 332.36/291.50 332.36/291.50 ---------------------------------------- 332.36/291.50 332.36/291.50 (45) 332.36/291.50 Obligation: 332.36/291.50 Proved the lower bound n^1 for the following obligation: 332.36/291.50 332.36/291.50 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). 332.36/291.50 332.36/291.50 332.36/291.50 The TRS R consists of the following rules: 332.36/291.50 332.36/291.50 fold#3(insert_ord(x2), Nil) -> Nil 332.36/291.50 fold#3(insert_ord(x6), Cons(x4, x2)) -> insert_ord#2(x6, x4, fold#3(insert_ord(x6), x2)) 332.36/291.50 cond_insert_ord_x_ys_1(True, x3, x2, x1) -> Cons(x3, Cons(x2, x1)) 332.36/291.50 cond_insert_ord_x_ys_1(False, x0, x5, x2) -> Cons(x5, insert_ord#2(leq, x0, x2)) 332.36/291.50 insert_ord#2(leq, x2, Nil) -> Cons(x2, Nil) 332.36/291.50 insert_ord#2(leq, x6, Cons(x4, x2)) -> cond_insert_ord_x_ys_1(leq#2(x6, x4), x6, x4, x2) 332.36/291.50 leq#2(0, x8) -> True 332.36/291.50 leq#2(S(x12), 0) -> False 332.36/291.50 leq#2(S(x4), S(x2)) -> leq#2(x4, x2) 332.36/291.50 main(x3) -> fold#3(insert_ord(leq), x3) 332.36/291.50 332.36/291.50 S is empty. 332.36/291.50 Rewrite Strategy: INNERMOST 332.36/291.50 ---------------------------------------- 332.36/291.50 332.36/291.50 (46) LowerBoundPropagationProof (FINISHED) 332.36/291.50 Propagated lower bound. 332.36/291.50 ---------------------------------------- 332.36/291.50 332.36/291.50 (47) 332.36/291.50 BOUNDS(n^1, INF) 332.36/291.50 332.36/291.50 ---------------------------------------- 332.36/291.50 332.36/291.50 (48) 332.36/291.50 Obligation: 332.36/291.50 Analyzing the following TRS for decreasing loops: 332.36/291.50 332.36/291.50 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). 332.36/291.50 332.36/291.50 332.36/291.50 The TRS R consists of the following rules: 332.36/291.50 332.36/291.50 fold#3(insert_ord(x2), Nil) -> Nil 332.36/291.50 fold#3(insert_ord(x6), Cons(x4, x2)) -> insert_ord#2(x6, x4, fold#3(insert_ord(x6), x2)) 332.36/291.50 cond_insert_ord_x_ys_1(True, x3, x2, x1) -> Cons(x3, Cons(x2, x1)) 332.36/291.50 cond_insert_ord_x_ys_1(False, x0, x5, x2) -> Cons(x5, insert_ord#2(leq, x0, x2)) 332.36/291.50 insert_ord#2(leq, x2, Nil) -> Cons(x2, Nil) 332.36/291.50 insert_ord#2(leq, x6, Cons(x4, x2)) -> cond_insert_ord_x_ys_1(leq#2(x6, x4), x6, x4, x2) 332.36/291.50 leq#2(0, x8) -> True 332.36/291.50 leq#2(S(x12), 0) -> False 332.36/291.50 leq#2(S(x4), S(x2)) -> leq#2(x4, x2) 332.36/291.50 main(x3) -> fold#3(insert_ord(leq), x3) 332.36/291.50 332.36/291.50 S is empty. 332.36/291.50 Rewrite Strategy: INNERMOST 332.47/291.52 EOF