3.60/1.70 WORST_CASE(Omega(n^1), O(n^1)) 3.60/1.71 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 3.60/1.71 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.60/1.71 3.60/1.71 3.60/1.71 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.60/1.71 3.60/1.71 (0) CpxTRS 3.60/1.71 (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] 3.60/1.71 (2) CpxTRS 3.60/1.71 (3) CpxTrsMatchBoundsTAProof [FINISHED, 47 ms] 3.60/1.71 (4) BOUNDS(1, n^1) 3.60/1.71 (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.60/1.71 (6) TRS for Loop Detection 3.60/1.71 (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.60/1.71 (8) BEST 3.60/1.71 (9) proven lower bound 3.60/1.71 (10) LowerBoundPropagationProof [FINISHED, 0 ms] 3.60/1.71 (11) BOUNDS(n^1, INF) 3.60/1.71 (12) TRS for Loop Detection 3.60/1.71 3.60/1.71 3.60/1.71 ---------------------------------------- 3.60/1.71 3.60/1.71 (0) 3.60/1.71 Obligation: 3.60/1.71 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.60/1.71 3.60/1.71 3.60/1.71 The TRS R consists of the following rules: 3.60/1.71 3.60/1.71 revApp#2(Nil, x16) -> x16 3.60/1.71 revApp#2(Cons(x6, x4), x2) -> revApp#2(x4, Cons(x6, x2)) 3.60/1.71 dfsAcc#3(Leaf(x8), x16) -> Cons(x8, x16) 3.60/1.71 dfsAcc#3(Node(x6, x4), x2) -> dfsAcc#3(x4, dfsAcc#3(x6, x2)) 3.60/1.71 main(x1) -> revApp#2(dfsAcc#3(x1, Nil), Nil) 3.60/1.71 3.60/1.71 S is empty. 3.60/1.71 Rewrite Strategy: INNERMOST 3.60/1.71 ---------------------------------------- 3.60/1.71 3.60/1.71 (1) RelTrsToTrsProof (UPPER BOUND(ID)) 3.60/1.71 transformed relative TRS to TRS 3.60/1.71 ---------------------------------------- 3.60/1.71 3.60/1.71 (2) 3.60/1.71 Obligation: 3.60/1.71 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). 3.60/1.71 3.60/1.71 3.60/1.71 The TRS R consists of the following rules: 3.60/1.71 3.60/1.71 revApp#2(Nil, x16) -> x16 3.60/1.71 revApp#2(Cons(x6, x4), x2) -> revApp#2(x4, Cons(x6, x2)) 3.60/1.71 dfsAcc#3(Leaf(x8), x16) -> Cons(x8, x16) 3.60/1.71 dfsAcc#3(Node(x6, x4), x2) -> dfsAcc#3(x4, dfsAcc#3(x6, x2)) 3.60/1.71 main(x1) -> revApp#2(dfsAcc#3(x1, Nil), Nil) 3.60/1.71 3.60/1.71 S is empty. 3.60/1.71 Rewrite Strategy: INNERMOST 3.60/1.71 ---------------------------------------- 3.60/1.71 3.60/1.71 (3) CpxTrsMatchBoundsTAProof (FINISHED) 3.60/1.71 A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. 3.60/1.71 3.60/1.71 The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: 3.60/1.71 final states : [1, 2, 3] 3.60/1.71 transitions: 3.60/1.71 Nil0() -> 0 3.60/1.71 Cons0(0, 0) -> 0 3.60/1.71 Leaf0(0) -> 0 3.60/1.71 Node0(0, 0) -> 0 3.60/1.71 revApp#20(0, 0) -> 1 3.60/1.71 dfsAcc#30(0, 0) -> 2 3.60/1.71 main0(0) -> 3 3.60/1.71 Cons1(0, 0) -> 4 3.60/1.71 revApp#21(0, 4) -> 1 3.60/1.71 Cons1(0, 0) -> 2 3.60/1.71 dfsAcc#31(0, 0) -> 5 3.60/1.71 dfsAcc#31(0, 5) -> 2 3.60/1.71 Nil1() -> 7 3.60/1.71 dfsAcc#31(0, 7) -> 6 3.60/1.71 Nil1() -> 8 3.60/1.71 revApp#21(6, 8) -> 3 3.60/1.71 Cons1(0, 4) -> 4 3.60/1.71 Cons1(0, 5) -> 2 3.60/1.71 Cons1(0, 0) -> 5 3.60/1.71 Cons1(0, 7) -> 6 3.60/1.71 dfsAcc#31(0, 5) -> 5 3.60/1.71 dfsAcc#31(0, 7) -> 5 3.60/1.71 dfsAcc#31(0, 5) -> 6 3.60/1.71 Cons2(0, 8) -> 9 3.60/1.71 revApp#22(7, 9) -> 3 3.60/1.71 Cons1(0, 5) -> 5 3.60/1.71 Cons1(0, 7) -> 5 3.60/1.71 Cons1(0, 5) -> 6 3.60/1.71 revApp#22(5, 9) -> 3 3.60/1.71 Cons2(0, 9) -> 9 3.60/1.71 revApp#22(0, 9) -> 3 3.60/1.71 Cons1(0, 9) -> 4 3.60/1.71 revApp#21(0, 4) -> 3 3.60/1.71 0 -> 1 3.60/1.71 4 -> 1 3.60/1.71 4 -> 3 3.60/1.71 9 -> 3 3.60/1.71 3.60/1.71 ---------------------------------------- 3.60/1.71 3.60/1.71 (4) 3.60/1.71 BOUNDS(1, n^1) 3.60/1.71 3.60/1.71 ---------------------------------------- 3.60/1.71 3.60/1.71 (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.60/1.71 Transformed a relative TRS into a decreasing-loop problem. 3.60/1.71 ---------------------------------------- 3.60/1.71 3.60/1.71 (6) 3.60/1.71 Obligation: 3.60/1.71 Analyzing the following TRS for decreasing loops: 3.60/1.71 3.60/1.71 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.60/1.71 3.60/1.71 3.60/1.71 The TRS R consists of the following rules: 3.60/1.71 3.60/1.71 revApp#2(Nil, x16) -> x16 3.60/1.71 revApp#2(Cons(x6, x4), x2) -> revApp#2(x4, Cons(x6, x2)) 3.60/1.71 dfsAcc#3(Leaf(x8), x16) -> Cons(x8, x16) 3.60/1.71 dfsAcc#3(Node(x6, x4), x2) -> dfsAcc#3(x4, dfsAcc#3(x6, x2)) 3.60/1.71 main(x1) -> revApp#2(dfsAcc#3(x1, Nil), Nil) 3.60/1.71 3.60/1.71 S is empty. 3.60/1.71 Rewrite Strategy: INNERMOST 3.60/1.71 ---------------------------------------- 3.60/1.71 3.60/1.71 (7) DecreasingLoopProof (LOWER BOUND(ID)) 3.60/1.71 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.60/1.71 3.60/1.71 The rewrite sequence 3.60/1.71 3.60/1.71 dfsAcc#3(Node(x6, x4), x2) ->^+ dfsAcc#3(x4, dfsAcc#3(x6, x2)) 3.60/1.71 3.60/1.71 gives rise to a decreasing loop by considering the right hand sides subterm at position []. 3.60/1.71 3.60/1.71 The pumping substitution is [x4 / Node(x6, x4)]. 3.60/1.71 3.60/1.71 The result substitution is [x2 / dfsAcc#3(x6, x2)]. 3.60/1.71 3.60/1.71 3.60/1.71 3.60/1.71 3.60/1.71 ---------------------------------------- 3.60/1.71 3.60/1.71 (8) 3.60/1.71 Complex Obligation (BEST) 3.60/1.71 3.60/1.71 ---------------------------------------- 3.60/1.71 3.60/1.71 (9) 3.60/1.71 Obligation: 3.60/1.71 Proved the lower bound n^1 for the following obligation: 3.60/1.71 3.60/1.71 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.60/1.71 3.60/1.71 3.60/1.71 The TRS R consists of the following rules: 3.60/1.71 3.60/1.71 revApp#2(Nil, x16) -> x16 3.60/1.71 revApp#2(Cons(x6, x4), x2) -> revApp#2(x4, Cons(x6, x2)) 3.60/1.71 dfsAcc#3(Leaf(x8), x16) -> Cons(x8, x16) 3.60/1.71 dfsAcc#3(Node(x6, x4), x2) -> dfsAcc#3(x4, dfsAcc#3(x6, x2)) 3.60/1.71 main(x1) -> revApp#2(dfsAcc#3(x1, Nil), Nil) 3.60/1.71 3.60/1.71 S is empty. 3.60/1.71 Rewrite Strategy: INNERMOST 3.60/1.71 ---------------------------------------- 3.60/1.71 3.60/1.71 (10) LowerBoundPropagationProof (FINISHED) 3.60/1.71 Propagated lower bound. 3.60/1.71 ---------------------------------------- 3.60/1.71 3.60/1.71 (11) 3.60/1.71 BOUNDS(n^1, INF) 3.60/1.71 3.60/1.71 ---------------------------------------- 3.60/1.71 3.60/1.71 (12) 3.60/1.71 Obligation: 3.60/1.71 Analyzing the following TRS for decreasing loops: 3.60/1.71 3.60/1.71 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.60/1.71 3.60/1.71 3.60/1.71 The TRS R consists of the following rules: 3.60/1.71 3.60/1.71 revApp#2(Nil, x16) -> x16 3.60/1.71 revApp#2(Cons(x6, x4), x2) -> revApp#2(x4, Cons(x6, x2)) 3.60/1.71 dfsAcc#3(Leaf(x8), x16) -> Cons(x8, x16) 3.60/1.71 dfsAcc#3(Node(x6, x4), x2) -> dfsAcc#3(x4, dfsAcc#3(x6, x2)) 3.60/1.71 main(x1) -> revApp#2(dfsAcc#3(x1, Nil), Nil) 3.60/1.71 3.60/1.71 S is empty. 3.60/1.71 Rewrite Strategy: INNERMOST 3.69/1.75 EOF