777.80/291.53 WORST_CASE(Omega(n^1), ?) 777.80/291.54 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 777.80/291.54 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 777.80/291.54 777.80/291.54 777.80/291.54 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 777.80/291.54 777.80/291.54 (0) CpxTRS 777.80/291.54 (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] 777.80/291.54 (2) CpxTRS 777.80/291.54 (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 777.80/291.54 (4) typed CpxTrs 777.80/291.54 (5) OrderProof [LOWER BOUND(ID), 0 ms] 777.80/291.54 (6) typed CpxTrs 777.80/291.54 (7) RewriteLemmaProof [LOWER BOUND(ID), 277 ms] 777.80/291.54 (8) BEST 777.80/291.54 (9) proven lower bound 777.80/291.54 (10) LowerBoundPropagationProof [FINISHED, 0 ms] 777.80/291.54 (11) BOUNDS(n^1, INF) 777.80/291.54 (12) typed CpxTrs 777.80/291.54 (13) RewriteLemmaProof [LOWER BOUND(ID), 22 ms] 777.80/291.54 (14) typed CpxTrs 777.80/291.54 777.80/291.54 777.80/291.54 ---------------------------------------- 777.80/291.54 777.80/291.54 (0) 777.80/291.54 Obligation: 777.80/291.54 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 777.80/291.54 777.80/291.54 777.80/291.54 The TRS R consists of the following rules: 777.80/291.54 777.80/291.54 -(x, 0) -> x 777.80/291.54 -(s(x), s(y)) -> -(x, y) 777.80/291.54 <=(0, y) -> true 777.80/291.54 <=(s(x), 0) -> false 777.80/291.54 <=(s(x), s(y)) -> <=(x, y) 777.80/291.54 if(true, x, y) -> x 777.80/291.54 if(false, x, y) -> y 777.80/291.54 perfectp(0) -> false 777.80/291.54 perfectp(s(x)) -> f(x, s(0), s(x), s(x)) 777.80/291.54 f(0, y, 0, u) -> true 777.80/291.54 f(0, y, s(z), u) -> false 777.80/291.54 f(s(x), 0, z, u) -> f(x, u, -(z, s(x)), u) 777.80/291.54 f(s(x), s(y), z, u) -> if(<=(x, y), f(s(x), -(y, x), z, u), f(x, u, z, u)) 777.80/291.54 777.80/291.54 S is empty. 777.80/291.54 Rewrite Strategy: INNERMOST 777.80/291.54 ---------------------------------------- 777.80/291.54 777.80/291.54 (1) RenamingProof (BOTH BOUNDS(ID, ID)) 777.80/291.54 Renamed function symbols to avoid clashes with predefined symbol. 777.80/291.54 ---------------------------------------- 777.80/291.54 777.80/291.54 (2) 777.80/291.54 Obligation: 777.80/291.54 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 777.80/291.54 777.80/291.54 777.80/291.54 The TRS R consists of the following rules: 777.80/291.54 777.80/291.54 -(x, 0') -> x 777.80/291.54 -(s(x), s(y)) -> -(x, y) 777.80/291.54 <=(0', y) -> true 777.80/291.54 <=(s(x), 0') -> false 777.80/291.54 <=(s(x), s(y)) -> <=(x, y) 777.80/291.54 if(true, x, y) -> x 777.80/291.54 if(false, x, y) -> y 777.80/291.54 perfectp(0') -> false 777.80/291.54 perfectp(s(x)) -> f(x, s(0'), s(x), s(x)) 777.80/291.54 f(0', y, 0', u) -> true 777.80/291.54 f(0', y, s(z), u) -> false 777.80/291.54 f(s(x), 0', z, u) -> f(x, u, -(z, s(x)), u) 777.80/291.54 f(s(x), s(y), z, u) -> if(<=(x, y), f(s(x), -(y, x), z, u), f(x, u, z, u)) 777.80/291.54 777.80/291.54 S is empty. 777.80/291.54 Rewrite Strategy: INNERMOST 777.80/291.54 ---------------------------------------- 777.80/291.54 777.80/291.54 (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 777.80/291.54 Infered types. 777.80/291.54 ---------------------------------------- 777.80/291.54 777.80/291.54 (4) 777.80/291.54 Obligation: 777.80/291.54 Innermost TRS: 777.80/291.54 Rules: 777.80/291.54 -(x, 0') -> x 777.80/291.54 -(s(x), s(y)) -> -(x, y) 777.80/291.54 <=(0', y) -> true 777.80/291.54 <=(s(x), 0') -> false 777.80/291.54 <=(s(x), s(y)) -> <=(x, y) 777.80/291.54 if(true, x, y) -> x 777.80/291.54 if(false, x, y) -> y 777.80/291.54 perfectp(0') -> false 777.80/291.54 perfectp(s(x)) -> f(x, s(0'), s(x), s(x)) 777.80/291.54 f(0', y, 0', u) -> true 777.80/291.54 f(0', y, s(z), u) -> false 777.80/291.54 f(s(x), 0', z, u) -> f(x, u, -(z, s(x)), u) 777.80/291.54 f(s(x), s(y), z, u) -> if(<=(x, y), f(s(x), -(y, x), z, u), f(x, u, z, u)) 777.80/291.54 777.80/291.54 Types: 777.80/291.54 - :: 0':s -> 0':s -> 0':s 777.80/291.54 0' :: 0':s 777.80/291.54 s :: 0':s -> 0':s 777.80/291.54 <= :: 0':s -> 0':s -> true:false 777.80/291.54 true :: true:false 777.80/291.54 false :: true:false 777.80/291.54 if :: true:false -> true:false -> true:false -> true:false 777.80/291.54 perfectp :: 0':s -> true:false 777.80/291.54 f :: 0':s -> 0':s -> 0':s -> 0':s -> true:false 777.80/291.54 hole_0':s1_0 :: 0':s 777.80/291.54 hole_true:false2_0 :: true:false 777.80/291.54 gen_0':s3_0 :: Nat -> 0':s 777.80/291.54 777.80/291.54 ---------------------------------------- 777.80/291.54 777.80/291.54 (5) OrderProof (LOWER BOUND(ID)) 777.80/291.54 Heuristically decided to analyse the following defined symbols: 777.80/291.54 -, <=, f 777.80/291.54 777.80/291.54 They will be analysed ascendingly in the following order: 777.80/291.54 - < f 777.80/291.54 <= < f 777.80/291.54 777.80/291.54 ---------------------------------------- 777.80/291.54 777.80/291.54 (6) 777.80/291.54 Obligation: 777.80/291.54 Innermost TRS: 777.80/291.54 Rules: 777.80/291.54 -(x, 0') -> x 777.80/291.54 -(s(x), s(y)) -> -(x, y) 777.80/291.54 <=(0', y) -> true 777.80/291.54 <=(s(x), 0') -> false 777.80/291.54 <=(s(x), s(y)) -> <=(x, y) 777.80/291.54 if(true, x, y) -> x 777.80/291.54 if(false, x, y) -> y 777.80/291.54 perfectp(0') -> false 777.80/291.54 perfectp(s(x)) -> f(x, s(0'), s(x), s(x)) 777.80/291.54 f(0', y, 0', u) -> true 777.80/291.54 f(0', y, s(z), u) -> false 777.80/291.54 f(s(x), 0', z, u) -> f(x, u, -(z, s(x)), u) 777.80/291.54 f(s(x), s(y), z, u) -> if(<=(x, y), f(s(x), -(y, x), z, u), f(x, u, z, u)) 777.80/291.54 777.80/291.54 Types: 777.80/291.54 - :: 0':s -> 0':s -> 0':s 777.80/291.54 0' :: 0':s 777.80/291.54 s :: 0':s -> 0':s 777.80/291.54 <= :: 0':s -> 0':s -> true:false 777.80/291.54 true :: true:false 777.80/291.54 false :: true:false 777.80/291.54 if :: true:false -> true:false -> true:false -> true:false 777.80/291.54 perfectp :: 0':s -> true:false 777.80/291.54 f :: 0':s -> 0':s -> 0':s -> 0':s -> true:false 777.80/291.54 hole_0':s1_0 :: 0':s 777.80/291.54 hole_true:false2_0 :: true:false 777.80/291.54 gen_0':s3_0 :: Nat -> 0':s 777.80/291.54 777.80/291.54 777.80/291.54 Generator Equations: 777.80/291.54 gen_0':s3_0(0) <=> 0' 777.80/291.54 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 777.80/291.54 777.80/291.54 777.80/291.54 The following defined symbols remain to be analysed: 777.80/291.54 -, <=, f 777.80/291.54 777.80/291.54 They will be analysed ascendingly in the following order: 777.80/291.54 - < f 777.80/291.54 <= < f 777.80/291.54 777.80/291.54 ---------------------------------------- 777.80/291.54 777.80/291.54 (7) RewriteLemmaProof (LOWER BOUND(ID)) 777.80/291.54 Proved the following rewrite lemma: 777.80/291.54 -(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(0), rt in Omega(1 + n5_0) 777.80/291.54 777.80/291.54 Induction Base: 777.80/291.54 -(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) 777.80/291.54 gen_0':s3_0(0) 777.80/291.54 777.80/291.54 Induction Step: 777.80/291.54 -(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) ->_R^Omega(1) 777.80/291.54 -(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) ->_IH 777.80/291.54 gen_0':s3_0(0) 777.80/291.54 777.80/291.54 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 777.80/291.54 ---------------------------------------- 777.80/291.54 777.80/291.54 (8) 777.80/291.54 Complex Obligation (BEST) 777.80/291.54 777.80/291.54 ---------------------------------------- 777.80/291.54 777.80/291.54 (9) 777.80/291.54 Obligation: 777.80/291.54 Proved the lower bound n^1 for the following obligation: 777.80/291.54 777.80/291.54 Innermost TRS: 777.80/291.54 Rules: 777.80/291.54 -(x, 0') -> x 777.80/291.54 -(s(x), s(y)) -> -(x, y) 777.80/291.54 <=(0', y) -> true 777.80/291.54 <=(s(x), 0') -> false 777.80/291.54 <=(s(x), s(y)) -> <=(x, y) 777.80/291.54 if(true, x, y) -> x 777.80/291.54 if(false, x, y) -> y 777.80/291.54 perfectp(0') -> false 777.80/291.54 perfectp(s(x)) -> f(x, s(0'), s(x), s(x)) 777.80/291.54 f(0', y, 0', u) -> true 777.80/291.54 f(0', y, s(z), u) -> false 777.80/291.54 f(s(x), 0', z, u) -> f(x, u, -(z, s(x)), u) 777.80/291.54 f(s(x), s(y), z, u) -> if(<=(x, y), f(s(x), -(y, x), z, u), f(x, u, z, u)) 777.80/291.54 777.80/291.54 Types: 777.80/291.54 - :: 0':s -> 0':s -> 0':s 777.80/291.54 0' :: 0':s 777.80/291.54 s :: 0':s -> 0':s 777.80/291.54 <= :: 0':s -> 0':s -> true:false 777.80/291.54 true :: true:false 777.80/291.54 false :: true:false 777.80/291.54 if :: true:false -> true:false -> true:false -> true:false 777.80/291.54 perfectp :: 0':s -> true:false 777.80/291.54 f :: 0':s -> 0':s -> 0':s -> 0':s -> true:false 777.80/291.54 hole_0':s1_0 :: 0':s 777.80/291.54 hole_true:false2_0 :: true:false 777.80/291.54 gen_0':s3_0 :: Nat -> 0':s 777.80/291.54 777.80/291.54 777.80/291.54 Generator Equations: 777.80/291.54 gen_0':s3_0(0) <=> 0' 777.80/291.54 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 777.80/291.54 777.80/291.54 777.80/291.54 The following defined symbols remain to be analysed: 777.80/291.54 -, <=, f 777.80/291.54 777.80/291.54 They will be analysed ascendingly in the following order: 777.80/291.54 - < f 777.80/291.54 <= < f 777.80/291.54 777.80/291.54 ---------------------------------------- 777.80/291.54 777.80/291.54 (10) LowerBoundPropagationProof (FINISHED) 777.80/291.54 Propagated lower bound. 777.80/291.54 ---------------------------------------- 777.80/291.54 777.80/291.54 (11) 777.80/291.54 BOUNDS(n^1, INF) 777.80/291.54 777.80/291.54 ---------------------------------------- 777.80/291.54 777.80/291.54 (12) 777.80/291.54 Obligation: 777.80/291.54 Innermost TRS: 777.80/291.54 Rules: 777.80/291.54 -(x, 0') -> x 777.80/291.54 -(s(x), s(y)) -> -(x, y) 777.80/291.54 <=(0', y) -> true 777.80/291.54 <=(s(x), 0') -> false 777.80/291.54 <=(s(x), s(y)) -> <=(x, y) 777.80/291.54 if(true, x, y) -> x 777.80/291.54 if(false, x, y) -> y 777.80/291.54 perfectp(0') -> false 777.80/291.54 perfectp(s(x)) -> f(x, s(0'), s(x), s(x)) 777.80/291.54 f(0', y, 0', u) -> true 777.80/291.54 f(0', y, s(z), u) -> false 777.80/291.54 f(s(x), 0', z, u) -> f(x, u, -(z, s(x)), u) 777.80/291.54 f(s(x), s(y), z, u) -> if(<=(x, y), f(s(x), -(y, x), z, u), f(x, u, z, u)) 777.80/291.54 777.80/291.54 Types: 777.80/291.54 - :: 0':s -> 0':s -> 0':s 777.80/291.54 0' :: 0':s 777.80/291.54 s :: 0':s -> 0':s 777.80/291.54 <= :: 0':s -> 0':s -> true:false 777.80/291.54 true :: true:false 777.80/291.54 false :: true:false 777.80/291.54 if :: true:false -> true:false -> true:false -> true:false 777.80/291.54 perfectp :: 0':s -> true:false 777.80/291.54 f :: 0':s -> 0':s -> 0':s -> 0':s -> true:false 777.80/291.54 hole_0':s1_0 :: 0':s 777.80/291.54 hole_true:false2_0 :: true:false 777.80/291.54 gen_0':s3_0 :: Nat -> 0':s 777.80/291.54 777.80/291.54 777.80/291.54 Lemmas: 777.80/291.54 -(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(0), rt in Omega(1 + n5_0) 777.80/291.54 777.80/291.54 777.80/291.54 Generator Equations: 777.80/291.54 gen_0':s3_0(0) <=> 0' 777.80/291.54 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 777.80/291.54 777.80/291.54 777.80/291.54 The following defined symbols remain to be analysed: 777.80/291.54 <=, f 777.80/291.54 777.80/291.54 They will be analysed ascendingly in the following order: 777.80/291.54 <= < f 777.80/291.54 777.80/291.54 ---------------------------------------- 777.80/291.54 777.80/291.54 (13) RewriteLemmaProof (LOWER BOUND(ID)) 777.80/291.54 Proved the following rewrite lemma: 777.80/291.54 <=(gen_0':s3_0(n289_0), gen_0':s3_0(n289_0)) -> true, rt in Omega(1 + n289_0) 777.80/291.54 777.80/291.54 Induction Base: 777.80/291.54 <=(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) 777.80/291.54 true 777.80/291.54 777.80/291.54 Induction Step: 777.80/291.54 <=(gen_0':s3_0(+(n289_0, 1)), gen_0':s3_0(+(n289_0, 1))) ->_R^Omega(1) 777.80/291.54 <=(gen_0':s3_0(n289_0), gen_0':s3_0(n289_0)) ->_IH 777.80/291.54 true 777.80/291.54 777.80/291.54 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 777.80/291.54 ---------------------------------------- 777.80/291.54 777.80/291.54 (14) 777.80/291.54 Obligation: 777.80/291.54 Innermost TRS: 777.80/291.54 Rules: 777.80/291.54 -(x, 0') -> x 777.80/291.54 -(s(x), s(y)) -> -(x, y) 777.80/291.54 <=(0', y) -> true 777.80/291.54 <=(s(x), 0') -> false 777.80/291.54 <=(s(x), s(y)) -> <=(x, y) 777.80/291.54 if(true, x, y) -> x 777.80/291.54 if(false, x, y) -> y 777.80/291.54 perfectp(0') -> false 777.80/291.54 perfectp(s(x)) -> f(x, s(0'), s(x), s(x)) 777.80/291.54 f(0', y, 0', u) -> true 777.80/291.54 f(0', y, s(z), u) -> false 777.80/291.54 f(s(x), 0', z, u) -> f(x, u, -(z, s(x)), u) 777.80/291.54 f(s(x), s(y), z, u) -> if(<=(x, y), f(s(x), -(y, x), z, u), f(x, u, z, u)) 777.80/291.54 777.80/291.54 Types: 777.80/291.54 - :: 0':s -> 0':s -> 0':s 777.80/291.54 0' :: 0':s 777.80/291.54 s :: 0':s -> 0':s 777.80/291.54 <= :: 0':s -> 0':s -> true:false 777.80/291.54 true :: true:false 777.80/291.54 false :: true:false 777.80/291.54 if :: true:false -> true:false -> true:false -> true:false 777.80/291.54 perfectp :: 0':s -> true:false 777.80/291.54 f :: 0':s -> 0':s -> 0':s -> 0':s -> true:false 777.80/291.54 hole_0':s1_0 :: 0':s 777.80/291.54 hole_true:false2_0 :: true:false 777.80/291.54 gen_0':s3_0 :: Nat -> 0':s 777.80/291.54 777.80/291.54 777.80/291.54 Lemmas: 777.80/291.54 -(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(0), rt in Omega(1 + n5_0) 777.80/291.54 <=(gen_0':s3_0(n289_0), gen_0':s3_0(n289_0)) -> true, rt in Omega(1 + n289_0) 777.80/291.54 777.80/291.54 777.80/291.54 Generator Equations: 777.80/291.54 gen_0':s3_0(0) <=> 0' 777.80/291.54 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 777.80/291.54 777.80/291.54 777.80/291.54 The following defined symbols remain to be analysed: 777.80/291.54 f 777.90/291.60 EOF