311.45/291.49 WORST_CASE(Omega(n^1), O(n^2)) 311.45/291.51 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 311.45/291.51 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 311.45/291.51 311.45/291.51 311.45/291.51 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). 311.45/291.51 311.45/291.51 (0) CpxTRS 311.45/291.51 (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] 311.45/291.51 (2) CdtProblem 311.45/291.51 (3) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] 311.45/291.51 (4) CdtProblem 311.45/291.51 (5) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 120 ms] 311.45/291.51 (6) CdtProblem 311.45/291.51 (7) CdtKnowledgeProof [BOTH BOUNDS(ID, ID), 0 ms] 311.45/291.51 (8) CdtProblem 311.45/291.51 (9) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 106 ms] 311.45/291.51 (10) CdtProblem 311.45/291.51 (11) CdtKnowledgeProof [FINISHED, 0 ms] 311.45/291.51 (12) BOUNDS(1, 1) 311.45/291.51 (13) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] 311.45/291.51 (14) CpxTRS 311.45/291.51 (15) SlicingProof [LOWER BOUND(ID), 0 ms] 311.45/291.51 (16) CpxTRS 311.45/291.51 (17) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 311.45/291.51 (18) typed CpxTrs 311.45/291.51 (19) OrderProof [LOWER BOUND(ID), 0 ms] 311.45/291.51 (20) typed CpxTrs 311.45/291.51 (21) RewriteLemmaProof [LOWER BOUND(ID), 249 ms] 311.45/291.51 (22) BEST 311.45/291.51 (23) proven lower bound 311.45/291.51 (24) LowerBoundPropagationProof [FINISHED, 0 ms] 311.45/291.51 (25) BOUNDS(n^1, INF) 311.45/291.51 (26) typed CpxTrs 311.45/291.51 (27) RewriteLemmaProof [LOWER BOUND(ID), 13 ms] 311.45/291.51 (28) typed CpxTrs 311.45/291.51 311.45/291.51 311.45/291.51 ---------------------------------------- 311.45/291.51 311.45/291.51 (0) 311.45/291.51 Obligation: 311.45/291.51 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). 311.45/291.51 311.45/291.51 311.45/291.51 The TRS R consists of the following rules: 311.45/291.51 311.45/291.51 append(@l1, @l2) -> append#1(@l1, @l2) 311.45/291.51 append#1(::(@x, @xs), @l2) -> ::(@x, append(@xs, @l2)) 311.45/291.51 append#1(nil, @l2) -> @l2 311.45/291.51 subtrees(@t) -> subtrees#1(@t) 311.45/291.51 subtrees#1(leaf) -> nil 311.45/291.51 subtrees#1(node(@x, @t1, @t2)) -> subtrees#2(subtrees(@t1), @t1, @t2, @x) 311.45/291.51 subtrees#2(@l1, @t1, @t2, @x) -> subtrees#3(subtrees(@t2), @l1, @t1, @t2, @x) 311.45/291.51 subtrees#3(@l2, @l1, @t1, @t2, @x) -> ::(node(@x, @t1, @t2), append(@l1, @l2)) 311.45/291.51 311.45/291.51 S is empty. 311.45/291.51 Rewrite Strategy: INNERMOST 311.45/291.51 ---------------------------------------- 311.45/291.51 311.45/291.51 (1) CpxTrsToCdtProof (UPPER BOUND(ID)) 311.45/291.51 Converted Cpx (relative) TRS to CDT 311.45/291.51 ---------------------------------------- 311.45/291.51 311.45/291.51 (2) 311.45/291.51 Obligation: 311.45/291.51 Complexity Dependency Tuples Problem 311.45/291.51 311.45/291.51 Rules: 311.45/291.51 append(z0, z1) -> append#1(z0, z1) 311.45/291.51 append#1(::(z0, z1), z2) -> ::(z0, append(z1, z2)) 311.45/291.51 append#1(nil, z0) -> z0 311.45/291.51 subtrees(z0) -> subtrees#1(z0) 311.45/291.51 subtrees#1(leaf) -> nil 311.45/291.51 subtrees#1(node(z0, z1, z2)) -> subtrees#2(subtrees(z1), z1, z2, z0) 311.45/291.51 subtrees#2(z0, z1, z2, z3) -> subtrees#3(subtrees(z2), z0, z1, z2, z3) 311.45/291.51 subtrees#3(z0, z1, z2, z3, z4) -> ::(node(z4, z2, z3), append(z1, z0)) 311.45/291.51 Tuples: 311.45/291.51 APPEND(z0, z1) -> c(APPEND#1(z0, z1)) 311.45/291.51 APPEND#1(::(z0, z1), z2) -> c1(APPEND(z1, z2)) 311.45/291.51 APPEND#1(nil, z0) -> c2 311.45/291.51 SUBTREES(z0) -> c3(SUBTREES#1(z0)) 311.45/291.51 SUBTREES#1(leaf) -> c4 311.45/291.51 SUBTREES#1(node(z0, z1, z2)) -> c5(SUBTREES#2(subtrees(z1), z1, z2, z0), SUBTREES(z1)) 311.45/291.51 SUBTREES#2(z0, z1, z2, z3) -> c6(SUBTREES#3(subtrees(z2), z0, z1, z2, z3), SUBTREES(z2)) 311.45/291.51 SUBTREES#3(z0, z1, z2, z3, z4) -> c7(APPEND(z1, z0)) 311.45/291.51 S tuples: 311.45/291.51 APPEND(z0, z1) -> c(APPEND#1(z0, z1)) 311.45/291.51 APPEND#1(::(z0, z1), z2) -> c1(APPEND(z1, z2)) 311.45/291.51 APPEND#1(nil, z0) -> c2 311.45/291.51 SUBTREES(z0) -> c3(SUBTREES#1(z0)) 311.45/291.51 SUBTREES#1(leaf) -> c4 311.45/291.51 SUBTREES#1(node(z0, z1, z2)) -> c5(SUBTREES#2(subtrees(z1), z1, z2, z0), SUBTREES(z1)) 311.45/291.51 SUBTREES#2(z0, z1, z2, z3) -> c6(SUBTREES#3(subtrees(z2), z0, z1, z2, z3), SUBTREES(z2)) 311.45/291.51 SUBTREES#3(z0, z1, z2, z3, z4) -> c7(APPEND(z1, z0)) 311.45/291.51 K tuples:none 311.45/291.51 Defined Rule Symbols: append_2, append#1_2, subtrees_1, subtrees#1_1, subtrees#2_4, subtrees#3_5 311.45/291.51 311.45/291.51 Defined Pair Symbols: APPEND_2, APPEND#1_2, SUBTREES_1, SUBTREES#1_1, SUBTREES#2_4, SUBTREES#3_5 311.45/291.51 311.45/291.51 Compound Symbols: c_1, c1_1, c2, c3_1, c4, c5_2, c6_2, c7_1 311.45/291.51 311.45/291.51 311.45/291.51 ---------------------------------------- 311.45/291.51 311.45/291.51 (3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) 311.45/291.51 Removed 2 trailing nodes: 311.45/291.51 APPEND#1(nil, z0) -> c2 311.45/291.51 SUBTREES#1(leaf) -> c4 311.45/291.51 311.45/291.51 ---------------------------------------- 311.45/291.51 311.45/291.51 (4) 311.45/291.51 Obligation: 311.45/291.51 Complexity Dependency Tuples Problem 311.45/291.51 311.45/291.51 Rules: 311.45/291.51 append(z0, z1) -> append#1(z0, z1) 311.45/291.51 append#1(::(z0, z1), z2) -> ::(z0, append(z1, z2)) 311.45/291.51 append#1(nil, z0) -> z0 311.45/291.51 subtrees(z0) -> subtrees#1(z0) 311.45/291.51 subtrees#1(leaf) -> nil 311.45/291.51 subtrees#1(node(z0, z1, z2)) -> subtrees#2(subtrees(z1), z1, z2, z0) 311.45/291.51 subtrees#2(z0, z1, z2, z3) -> subtrees#3(subtrees(z2), z0, z1, z2, z3) 311.45/291.51 subtrees#3(z0, z1, z2, z3, z4) -> ::(node(z4, z2, z3), append(z1, z0)) 311.45/291.51 Tuples: 311.45/291.51 APPEND(z0, z1) -> c(APPEND#1(z0, z1)) 311.45/291.51 APPEND#1(::(z0, z1), z2) -> c1(APPEND(z1, z2)) 311.45/291.51 SUBTREES(z0) -> c3(SUBTREES#1(z0)) 311.45/291.51 SUBTREES#1(node(z0, z1, z2)) -> c5(SUBTREES#2(subtrees(z1), z1, z2, z0), SUBTREES(z1)) 311.45/291.51 SUBTREES#2(z0, z1, z2, z3) -> c6(SUBTREES#3(subtrees(z2), z0, z1, z2, z3), SUBTREES(z2)) 311.45/291.51 SUBTREES#3(z0, z1, z2, z3, z4) -> c7(APPEND(z1, z0)) 311.45/291.51 S tuples: 311.45/291.51 APPEND(z0, z1) -> c(APPEND#1(z0, z1)) 311.45/291.51 APPEND#1(::(z0, z1), z2) -> c1(APPEND(z1, z2)) 311.45/291.51 SUBTREES(z0) -> c3(SUBTREES#1(z0)) 311.45/291.51 SUBTREES#1(node(z0, z1, z2)) -> c5(SUBTREES#2(subtrees(z1), z1, z2, z0), SUBTREES(z1)) 311.45/291.51 SUBTREES#2(z0, z1, z2, z3) -> c6(SUBTREES#3(subtrees(z2), z0, z1, z2, z3), SUBTREES(z2)) 311.45/291.51 SUBTREES#3(z0, z1, z2, z3, z4) -> c7(APPEND(z1, z0)) 311.45/291.51 K tuples:none 311.45/291.51 Defined Rule Symbols: append_2, append#1_2, subtrees_1, subtrees#1_1, subtrees#2_4, subtrees#3_5 311.45/291.51 311.45/291.51 Defined Pair Symbols: APPEND_2, APPEND#1_2, SUBTREES_1, SUBTREES#1_1, SUBTREES#2_4, SUBTREES#3_5 311.45/291.51 311.45/291.51 Compound Symbols: c_1, c1_1, c3_1, c5_2, c6_2, c7_1 311.45/291.51 311.45/291.51 311.45/291.51 ---------------------------------------- 311.45/291.51 311.45/291.51 (5) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) 311.45/291.51 Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. 311.45/291.51 SUBTREES#1(node(z0, z1, z2)) -> c5(SUBTREES#2(subtrees(z1), z1, z2, z0), SUBTREES(z1)) 311.45/291.51 We considered the (Usable) Rules: 311.45/291.51 subtrees#3(z0, z1, z2, z3, z4) -> ::(node(z4, z2, z3), append(z1, z0)) 311.45/291.51 subtrees#2(z0, z1, z2, z3) -> subtrees#3(subtrees(z2), z0, z1, z2, z3) 311.45/291.51 append(z0, z1) -> append#1(z0, z1) 311.45/291.51 append#1(nil, z0) -> z0 311.45/291.51 subtrees(z0) -> subtrees#1(z0) 311.45/291.51 subtrees#1(node(z0, z1, z2)) -> subtrees#2(subtrees(z1), z1, z2, z0) 311.45/291.51 subtrees#1(leaf) -> nil 311.45/291.51 append#1(::(z0, z1), z2) -> ::(z0, append(z1, z2)) 311.45/291.51 And the Tuples: 311.45/291.51 APPEND(z0, z1) -> c(APPEND#1(z0, z1)) 311.45/291.51 APPEND#1(::(z0, z1), z2) -> c1(APPEND(z1, z2)) 311.45/291.51 SUBTREES(z0) -> c3(SUBTREES#1(z0)) 311.45/291.51 SUBTREES#1(node(z0, z1, z2)) -> c5(SUBTREES#2(subtrees(z1), z1, z2, z0), SUBTREES(z1)) 311.45/291.51 SUBTREES#2(z0, z1, z2, z3) -> c6(SUBTREES#3(subtrees(z2), z0, z1, z2, z3), SUBTREES(z2)) 311.45/291.51 SUBTREES#3(z0, z1, z2, z3, z4) -> c7(APPEND(z1, z0)) 311.45/291.51 The order we found is given by the following interpretation: 311.45/291.51 311.45/291.51 Polynomial interpretation : 311.45/291.51 311.45/291.51 POL(::(x_1, x_2)) = x_2 311.45/291.51 POL(APPEND(x_1, x_2)) = x_1 + x_2 311.45/291.51 POL(APPEND#1(x_1, x_2)) = x_1 + x_2 311.45/291.51 POL(SUBTREES(x_1)) = x_1 311.45/291.51 POL(SUBTREES#1(x_1)) = x_1 311.45/291.51 POL(SUBTREES#2(x_1, x_2, x_3, x_4)) = x_1 + x_3 + x_4 311.45/291.51 POL(SUBTREES#3(x_1, x_2, x_3, x_4, x_5)) = x_1 + x_2 + x_5 311.45/291.51 POL(append(x_1, x_2)) = x_1 + x_2 311.45/291.51 POL(append#1(x_1, x_2)) = x_1 + x_2 311.45/291.51 POL(c(x_1)) = x_1 311.45/291.51 POL(c1(x_1)) = x_1 311.45/291.51 POL(c3(x_1)) = x_1 311.45/291.51 POL(c5(x_1, x_2)) = x_1 + x_2 311.45/291.51 POL(c6(x_1, x_2)) = x_1 + x_2 311.45/291.51 POL(c7(x_1)) = x_1 311.45/291.51 POL(leaf) = [1] 311.45/291.51 POL(nil) = 0 311.45/291.51 POL(node(x_1, x_2, x_3)) = [1] + x_1 + x_2 + x_3 311.45/291.51 POL(subtrees(x_1)) = 0 311.45/291.51 POL(subtrees#1(x_1)) = 0 311.45/291.51 POL(subtrees#2(x_1, x_2, x_3, x_4)) = x_1 311.45/291.51 POL(subtrees#3(x_1, x_2, x_3, x_4, x_5)) = x_1 + x_2 311.45/291.51 311.45/291.51 ---------------------------------------- 311.45/291.51 311.45/291.51 (6) 311.45/291.51 Obligation: 311.45/291.51 Complexity Dependency Tuples Problem 311.45/291.51 311.45/291.51 Rules: 311.45/291.51 append(z0, z1) -> append#1(z0, z1) 311.45/291.51 append#1(::(z0, z1), z2) -> ::(z0, append(z1, z2)) 311.45/291.51 append#1(nil, z0) -> z0 311.45/291.51 subtrees(z0) -> subtrees#1(z0) 311.45/291.51 subtrees#1(leaf) -> nil 311.45/291.51 subtrees#1(node(z0, z1, z2)) -> subtrees#2(subtrees(z1), z1, z2, z0) 311.45/291.51 subtrees#2(z0, z1, z2, z3) -> subtrees#3(subtrees(z2), z0, z1, z2, z3) 311.45/291.51 subtrees#3(z0, z1, z2, z3, z4) -> ::(node(z4, z2, z3), append(z1, z0)) 311.45/291.51 Tuples: 311.45/291.51 APPEND(z0, z1) -> c(APPEND#1(z0, z1)) 311.45/291.51 APPEND#1(::(z0, z1), z2) -> c1(APPEND(z1, z2)) 311.45/291.51 SUBTREES(z0) -> c3(SUBTREES#1(z0)) 311.45/291.51 SUBTREES#1(node(z0, z1, z2)) -> c5(SUBTREES#2(subtrees(z1), z1, z2, z0), SUBTREES(z1)) 311.45/291.51 SUBTREES#2(z0, z1, z2, z3) -> c6(SUBTREES#3(subtrees(z2), z0, z1, z2, z3), SUBTREES(z2)) 311.45/291.51 SUBTREES#3(z0, z1, z2, z3, z4) -> c7(APPEND(z1, z0)) 311.45/291.51 S tuples: 311.45/291.51 APPEND(z0, z1) -> c(APPEND#1(z0, z1)) 311.45/291.51 APPEND#1(::(z0, z1), z2) -> c1(APPEND(z1, z2)) 311.45/291.51 SUBTREES(z0) -> c3(SUBTREES#1(z0)) 311.45/291.51 SUBTREES#2(z0, z1, z2, z3) -> c6(SUBTREES#3(subtrees(z2), z0, z1, z2, z3), SUBTREES(z2)) 311.45/291.51 SUBTREES#3(z0, z1, z2, z3, z4) -> c7(APPEND(z1, z0)) 311.45/291.51 K tuples: 311.45/291.51 SUBTREES#1(node(z0, z1, z2)) -> c5(SUBTREES#2(subtrees(z1), z1, z2, z0), SUBTREES(z1)) 311.45/291.51 Defined Rule Symbols: append_2, append#1_2, subtrees_1, subtrees#1_1, subtrees#2_4, subtrees#3_5 311.45/291.51 311.45/291.51 Defined Pair Symbols: APPEND_2, APPEND#1_2, SUBTREES_1, SUBTREES#1_1, SUBTREES#2_4, SUBTREES#3_5 311.45/291.51 311.45/291.51 Compound Symbols: c_1, c1_1, c3_1, c5_2, c6_2, c7_1 311.45/291.51 311.45/291.51 311.45/291.51 ---------------------------------------- 311.45/291.51 311.45/291.51 (7) CdtKnowledgeProof (BOTH BOUNDS(ID, ID)) 311.45/291.51 The following tuples could be moved from S to K by knowledge propagation: 311.45/291.51 SUBTREES#2(z0, z1, z2, z3) -> c6(SUBTREES#3(subtrees(z2), z0, z1, z2, z3), SUBTREES(z2)) 311.45/291.51 SUBTREES#3(z0, z1, z2, z3, z4) -> c7(APPEND(z1, z0)) 311.45/291.51 SUBTREES#3(z0, z1, z2, z3, z4) -> c7(APPEND(z1, z0)) 311.45/291.51 SUBTREES(z0) -> c3(SUBTREES#1(z0)) 311.45/291.51 SUBTREES#1(node(z0, z1, z2)) -> c5(SUBTREES#2(subtrees(z1), z1, z2, z0), SUBTREES(z1)) 311.45/291.51 311.45/291.51 ---------------------------------------- 311.45/291.51 311.45/291.51 (8) 311.45/291.51 Obligation: 311.45/291.51 Complexity Dependency Tuples Problem 311.45/291.51 311.45/291.51 Rules: 311.45/291.51 append(z0, z1) -> append#1(z0, z1) 311.45/291.51 append#1(::(z0, z1), z2) -> ::(z0, append(z1, z2)) 311.45/291.51 append#1(nil, z0) -> z0 311.45/291.51 subtrees(z0) -> subtrees#1(z0) 311.45/291.51 subtrees#1(leaf) -> nil 311.45/291.51 subtrees#1(node(z0, z1, z2)) -> subtrees#2(subtrees(z1), z1, z2, z0) 311.45/291.51 subtrees#2(z0, z1, z2, z3) -> subtrees#3(subtrees(z2), z0, z1, z2, z3) 311.45/291.51 subtrees#3(z0, z1, z2, z3, z4) -> ::(node(z4, z2, z3), append(z1, z0)) 311.45/291.51 Tuples: 311.45/291.51 APPEND(z0, z1) -> c(APPEND#1(z0, z1)) 311.45/291.51 APPEND#1(::(z0, z1), z2) -> c1(APPEND(z1, z2)) 311.45/291.51 SUBTREES(z0) -> c3(SUBTREES#1(z0)) 311.45/291.51 SUBTREES#1(node(z0, z1, z2)) -> c5(SUBTREES#2(subtrees(z1), z1, z2, z0), SUBTREES(z1)) 311.45/291.51 SUBTREES#2(z0, z1, z2, z3) -> c6(SUBTREES#3(subtrees(z2), z0, z1, z2, z3), SUBTREES(z2)) 311.45/291.51 SUBTREES#3(z0, z1, z2, z3, z4) -> c7(APPEND(z1, z0)) 311.45/291.51 S tuples: 311.45/291.51 APPEND(z0, z1) -> c(APPEND#1(z0, z1)) 311.45/291.51 APPEND#1(::(z0, z1), z2) -> c1(APPEND(z1, z2)) 311.45/291.51 K tuples: 311.45/291.51 SUBTREES#1(node(z0, z1, z2)) -> c5(SUBTREES#2(subtrees(z1), z1, z2, z0), SUBTREES(z1)) 311.45/291.51 SUBTREES#2(z0, z1, z2, z3) -> c6(SUBTREES#3(subtrees(z2), z0, z1, z2, z3), SUBTREES(z2)) 311.45/291.51 SUBTREES#3(z0, z1, z2, z3, z4) -> c7(APPEND(z1, z0)) 311.45/291.51 SUBTREES(z0) -> c3(SUBTREES#1(z0)) 311.45/291.51 Defined Rule Symbols: append_2, append#1_2, subtrees_1, subtrees#1_1, subtrees#2_4, subtrees#3_5 311.45/291.51 311.45/291.51 Defined Pair Symbols: APPEND_2, APPEND#1_2, SUBTREES_1, SUBTREES#1_1, SUBTREES#2_4, SUBTREES#3_5 311.45/291.51 311.45/291.51 Compound Symbols: c_1, c1_1, c3_1, c5_2, c6_2, c7_1 311.45/291.51 311.45/291.51 311.45/291.51 ---------------------------------------- 311.45/291.51 311.45/291.51 (9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) 311.45/291.51 Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. 311.45/291.51 APPEND#1(::(z0, z1), z2) -> c1(APPEND(z1, z2)) 311.45/291.51 We considered the (Usable) Rules: 311.45/291.51 subtrees#3(z0, z1, z2, z3, z4) -> ::(node(z4, z2, z3), append(z1, z0)) 311.45/291.51 subtrees#2(z0, z1, z2, z3) -> subtrees#3(subtrees(z2), z0, z1, z2, z3) 311.45/291.51 append(z0, z1) -> append#1(z0, z1) 311.45/291.51 append#1(nil, z0) -> z0 311.45/291.51 subtrees(z0) -> subtrees#1(z0) 311.45/291.51 subtrees#1(node(z0, z1, z2)) -> subtrees#2(subtrees(z1), z1, z2, z0) 311.45/291.51 subtrees#1(leaf) -> nil 311.45/291.51 append#1(::(z0, z1), z2) -> ::(z0, append(z1, z2)) 311.45/291.51 And the Tuples: 311.45/291.51 APPEND(z0, z1) -> c(APPEND#1(z0, z1)) 311.45/291.51 APPEND#1(::(z0, z1), z2) -> c1(APPEND(z1, z2)) 311.45/291.51 SUBTREES(z0) -> c3(SUBTREES#1(z0)) 311.45/291.51 SUBTREES#1(node(z0, z1, z2)) -> c5(SUBTREES#2(subtrees(z1), z1, z2, z0), SUBTREES(z1)) 311.45/291.51 SUBTREES#2(z0, z1, z2, z3) -> c6(SUBTREES#3(subtrees(z2), z0, z1, z2, z3), SUBTREES(z2)) 311.45/291.51 SUBTREES#3(z0, z1, z2, z3, z4) -> c7(APPEND(z1, z0)) 311.45/291.51 The order we found is given by the following interpretation: 311.45/291.51 311.45/291.51 Polynomial interpretation : 311.45/291.51 311.45/291.51 POL(::(x_1, x_2)) = [2] + x_2 311.45/291.51 POL(APPEND(x_1, x_2)) = [2]x_1 311.45/291.51 POL(APPEND#1(x_1, x_2)) = [2]x_1 311.45/291.51 POL(SUBTREES(x_1)) = x_1^2 311.45/291.51 POL(SUBTREES#1(x_1)) = x_1^2 311.45/291.51 POL(SUBTREES#2(x_1, x_2, x_3, x_4)) = [2]x_1 + x_3^2 + [2]x_2*x_3 311.45/291.51 POL(SUBTREES#3(x_1, x_2, x_3, x_4, x_5)) = [2]x_2 + x_3*x_4 311.45/291.51 POL(append(x_1, x_2)) = x_1 + x_2 311.45/291.51 POL(append#1(x_1, x_2)) = x_1 + x_2 311.45/291.51 POL(c(x_1)) = x_1 311.45/291.51 POL(c1(x_1)) = x_1 311.45/291.51 POL(c3(x_1)) = x_1 311.45/291.51 POL(c5(x_1, x_2)) = x_1 + x_2 311.45/291.51 POL(c6(x_1, x_2)) = x_1 + x_2 311.45/291.51 POL(c7(x_1)) = x_1 311.45/291.51 POL(leaf) = 0 311.45/291.51 POL(nil) = 0 311.45/291.51 POL(node(x_1, x_2, x_3)) = [2] + x_2 + x_3 311.45/291.51 POL(subtrees(x_1)) = [2]x_1 311.45/291.51 POL(subtrees#1(x_1)) = [2]x_1 311.45/291.51 POL(subtrees#2(x_1, x_2, x_3, x_4)) = [2] + x_1 + [2]x_3 311.45/291.51 POL(subtrees#3(x_1, x_2, x_3, x_4, x_5)) = [2] + x_1 + x_2 311.45/291.51 311.45/291.51 ---------------------------------------- 311.45/291.51 311.45/291.51 (10) 311.45/291.51 Obligation: 311.45/291.51 Complexity Dependency Tuples Problem 311.45/291.51 311.45/291.51 Rules: 311.45/291.51 append(z0, z1) -> append#1(z0, z1) 311.45/291.51 append#1(::(z0, z1), z2) -> ::(z0, append(z1, z2)) 311.45/291.51 append#1(nil, z0) -> z0 311.45/291.51 subtrees(z0) -> subtrees#1(z0) 311.45/291.51 subtrees#1(leaf) -> nil 311.45/291.51 subtrees#1(node(z0, z1, z2)) -> subtrees#2(subtrees(z1), z1, z2, z0) 311.45/291.51 subtrees#2(z0, z1, z2, z3) -> subtrees#3(subtrees(z2), z0, z1, z2, z3) 311.45/291.51 subtrees#3(z0, z1, z2, z3, z4) -> ::(node(z4, z2, z3), append(z1, z0)) 311.45/291.51 Tuples: 311.45/291.51 APPEND(z0, z1) -> c(APPEND#1(z0, z1)) 311.45/291.51 APPEND#1(::(z0, z1), z2) -> c1(APPEND(z1, z2)) 311.45/291.51 SUBTREES(z0) -> c3(SUBTREES#1(z0)) 311.45/291.51 SUBTREES#1(node(z0, z1, z2)) -> c5(SUBTREES#2(subtrees(z1), z1, z2, z0), SUBTREES(z1)) 311.45/291.51 SUBTREES#2(z0, z1, z2, z3) -> c6(SUBTREES#3(subtrees(z2), z0, z1, z2, z3), SUBTREES(z2)) 311.45/291.51 SUBTREES#3(z0, z1, z2, z3, z4) -> c7(APPEND(z1, z0)) 311.45/291.51 S tuples: 311.45/291.51 APPEND(z0, z1) -> c(APPEND#1(z0, z1)) 311.45/291.51 K tuples: 311.45/291.51 SUBTREES#1(node(z0, z1, z2)) -> c5(SUBTREES#2(subtrees(z1), z1, z2, z0), SUBTREES(z1)) 311.45/291.51 SUBTREES#2(z0, z1, z2, z3) -> c6(SUBTREES#3(subtrees(z2), z0, z1, z2, z3), SUBTREES(z2)) 311.45/291.51 SUBTREES#3(z0, z1, z2, z3, z4) -> c7(APPEND(z1, z0)) 311.45/291.51 SUBTREES(z0) -> c3(SUBTREES#1(z0)) 311.45/291.51 APPEND#1(::(z0, z1), z2) -> c1(APPEND(z1, z2)) 311.45/291.51 Defined Rule Symbols: append_2, append#1_2, subtrees_1, subtrees#1_1, subtrees#2_4, subtrees#3_5 311.45/291.51 311.45/291.51 Defined Pair Symbols: APPEND_2, APPEND#1_2, SUBTREES_1, SUBTREES#1_1, SUBTREES#2_4, SUBTREES#3_5 311.45/291.51 311.45/291.51 Compound Symbols: c_1, c1_1, c3_1, c5_2, c6_2, c7_1 311.45/291.51 311.45/291.51 311.45/291.51 ---------------------------------------- 311.45/291.51 311.45/291.51 (11) CdtKnowledgeProof (FINISHED) 311.45/291.51 The following tuples could be moved from S to K by knowledge propagation: 311.45/291.51 APPEND(z0, z1) -> c(APPEND#1(z0, z1)) 311.45/291.51 APPEND#1(::(z0, z1), z2) -> c1(APPEND(z1, z2)) 311.45/291.51 Now S is empty 311.45/291.51 ---------------------------------------- 311.45/291.51 311.45/291.51 (12) 311.45/291.51 BOUNDS(1, 1) 311.45/291.51 311.45/291.51 ---------------------------------------- 311.45/291.51 311.45/291.51 (13) RenamingProof (BOTH BOUNDS(ID, ID)) 311.45/291.51 Renamed function symbols to avoid clashes with predefined symbol. 311.45/291.51 ---------------------------------------- 311.45/291.51 311.45/291.51 (14) 311.45/291.51 Obligation: 311.45/291.51 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 311.45/291.51 311.45/291.51 311.45/291.51 The TRS R consists of the following rules: 311.45/291.51 311.45/291.51 append(@l1, @l2) -> append#1(@l1, @l2) 311.45/291.51 append#1(::(@x, @xs), @l2) -> ::(@x, append(@xs, @l2)) 311.45/291.51 append#1(nil, @l2) -> @l2 311.45/291.51 subtrees(@t) -> subtrees#1(@t) 311.45/291.51 subtrees#1(leaf) -> nil 311.45/291.51 subtrees#1(node(@x, @t1, @t2)) -> subtrees#2(subtrees(@t1), @t1, @t2, @x) 311.45/291.51 subtrees#2(@l1, @t1, @t2, @x) -> subtrees#3(subtrees(@t2), @l1, @t1, @t2, @x) 311.45/291.51 subtrees#3(@l2, @l1, @t1, @t2, @x) -> ::(node(@x, @t1, @t2), append(@l1, @l2)) 311.45/291.51 311.45/291.51 S is empty. 311.45/291.51 Rewrite Strategy: INNERMOST 311.45/291.51 ---------------------------------------- 311.45/291.51 311.45/291.51 (15) SlicingProof (LOWER BOUND(ID)) 311.45/291.51 Sliced the following arguments: 311.45/291.51 ::/0 311.45/291.51 node/0 311.45/291.51 subtrees#2/1 311.45/291.51 subtrees#2/3 311.45/291.51 subtrees#3/2 311.45/291.51 subtrees#3/3 311.45/291.51 subtrees#3/4 311.45/291.51 311.45/291.51 ---------------------------------------- 311.45/291.51 311.45/291.51 (16) 311.45/291.51 Obligation: 311.45/291.51 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 311.45/291.51 311.45/291.51 311.45/291.51 The TRS R consists of the following rules: 311.45/291.51 311.45/291.51 append(@l1, @l2) -> append#1(@l1, @l2) 311.45/291.51 append#1(::(@xs), @l2) -> ::(append(@xs, @l2)) 311.45/291.51 append#1(nil, @l2) -> @l2 311.45/291.51 subtrees(@t) -> subtrees#1(@t) 311.45/291.51 subtrees#1(leaf) -> nil 311.45/291.51 subtrees#1(node(@t1, @t2)) -> subtrees#2(subtrees(@t1), @t2) 311.45/291.51 subtrees#2(@l1, @t2) -> subtrees#3(subtrees(@t2), @l1) 311.45/291.51 subtrees#3(@l2, @l1) -> ::(append(@l1, @l2)) 311.45/291.51 311.45/291.51 S is empty. 311.45/291.51 Rewrite Strategy: INNERMOST 311.45/291.51 ---------------------------------------- 311.45/291.51 311.45/291.51 (17) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 311.45/291.51 Infered types. 311.45/291.51 ---------------------------------------- 311.45/291.51 311.45/291.51 (18) 311.45/291.51 Obligation: 311.45/291.51 Innermost TRS: 311.45/291.51 Rules: 311.45/291.51 append(@l1, @l2) -> append#1(@l1, @l2) 311.45/291.51 append#1(::(@xs), @l2) -> ::(append(@xs, @l2)) 311.45/291.51 append#1(nil, @l2) -> @l2 311.45/291.51 subtrees(@t) -> subtrees#1(@t) 311.45/291.51 subtrees#1(leaf) -> nil 311.45/291.51 subtrees#1(node(@t1, @t2)) -> subtrees#2(subtrees(@t1), @t2) 311.45/291.51 subtrees#2(@l1, @t2) -> subtrees#3(subtrees(@t2), @l1) 311.45/291.51 subtrees#3(@l2, @l1) -> ::(append(@l1, @l2)) 311.45/291.51 311.45/291.51 Types: 311.45/291.51 append :: :::nil -> :::nil -> :::nil 311.45/291.51 append#1 :: :::nil -> :::nil -> :::nil 311.45/291.51 :: :: :::nil -> :::nil 311.45/291.51 nil :: :::nil 311.45/291.51 subtrees :: leaf:node -> :::nil 311.45/291.51 subtrees#1 :: leaf:node -> :::nil 311.45/291.51 leaf :: leaf:node 311.45/291.51 node :: leaf:node -> leaf:node -> leaf:node 311.45/291.51 subtrees#2 :: :::nil -> leaf:node -> :::nil 311.45/291.51 subtrees#3 :: :::nil -> :::nil -> :::nil 311.45/291.51 hole_:::nil1_0 :: :::nil 311.45/291.51 hole_leaf:node2_0 :: leaf:node 311.45/291.51 gen_:::nil3_0 :: Nat -> :::nil 311.45/291.51 gen_leaf:node4_0 :: Nat -> leaf:node 311.45/291.51 311.45/291.51 ---------------------------------------- 311.45/291.51 311.45/291.51 (19) OrderProof (LOWER BOUND(ID)) 311.45/291.51 Heuristically decided to analyse the following defined symbols: 311.45/291.51 append, append#1, subtrees, subtrees#1 311.45/291.51 311.45/291.51 They will be analysed ascendingly in the following order: 311.45/291.51 append = append#1 311.45/291.51 subtrees = subtrees#1 311.45/291.51 311.45/291.51 ---------------------------------------- 311.45/291.51 311.45/291.51 (20) 311.45/291.51 Obligation: 311.45/291.51 Innermost TRS: 311.45/291.51 Rules: 311.45/291.51 append(@l1, @l2) -> append#1(@l1, @l2) 311.45/291.51 append#1(::(@xs), @l2) -> ::(append(@xs, @l2)) 311.45/291.51 append#1(nil, @l2) -> @l2 311.45/291.51 subtrees(@t) -> subtrees#1(@t) 311.45/291.51 subtrees#1(leaf) -> nil 311.45/291.51 subtrees#1(node(@t1, @t2)) -> subtrees#2(subtrees(@t1), @t2) 311.45/291.51 subtrees#2(@l1, @t2) -> subtrees#3(subtrees(@t2), @l1) 311.45/291.51 subtrees#3(@l2, @l1) -> ::(append(@l1, @l2)) 311.45/291.51 311.45/291.51 Types: 311.45/291.51 append :: :::nil -> :::nil -> :::nil 311.45/291.51 append#1 :: :::nil -> :::nil -> :::nil 311.45/291.51 :: :: :::nil -> :::nil 311.45/291.51 nil :: :::nil 311.45/291.51 subtrees :: leaf:node -> :::nil 311.45/291.51 subtrees#1 :: leaf:node -> :::nil 311.45/291.51 leaf :: leaf:node 311.45/291.51 node :: leaf:node -> leaf:node -> leaf:node 311.45/291.51 subtrees#2 :: :::nil -> leaf:node -> :::nil 311.45/291.51 subtrees#3 :: :::nil -> :::nil -> :::nil 311.45/291.51 hole_:::nil1_0 :: :::nil 311.45/291.51 hole_leaf:node2_0 :: leaf:node 311.45/291.51 gen_:::nil3_0 :: Nat -> :::nil 311.45/291.51 gen_leaf:node4_0 :: Nat -> leaf:node 311.45/291.51 311.45/291.51 311.45/291.51 Generator Equations: 311.45/291.51 gen_:::nil3_0(0) <=> nil 311.45/291.51 gen_:::nil3_0(+(x, 1)) <=> ::(gen_:::nil3_0(x)) 311.45/291.51 gen_leaf:node4_0(0) <=> leaf 311.45/291.51 gen_leaf:node4_0(+(x, 1)) <=> node(leaf, gen_leaf:node4_0(x)) 311.45/291.51 311.45/291.51 311.45/291.51 The following defined symbols remain to be analysed: 311.45/291.51 subtrees#1, append, append#1, subtrees 311.45/291.51 311.45/291.51 They will be analysed ascendingly in the following order: 311.45/291.51 append = append#1 311.45/291.51 subtrees = subtrees#1 311.45/291.51 311.45/291.51 ---------------------------------------- 311.45/291.51 311.45/291.51 (21) RewriteLemmaProof (LOWER BOUND(ID)) 311.45/291.51 Proved the following rewrite lemma: 311.45/291.51 subtrees#1(gen_leaf:node4_0(n6_0)) -> gen_:::nil3_0(n6_0), rt in Omega(1 + n6_0) 311.45/291.51 311.45/291.51 Induction Base: 311.45/291.51 subtrees#1(gen_leaf:node4_0(0)) ->_R^Omega(1) 311.45/291.51 nil 311.45/291.51 311.45/291.51 Induction Step: 311.45/291.51 subtrees#1(gen_leaf:node4_0(+(n6_0, 1))) ->_R^Omega(1) 311.45/291.51 subtrees#2(subtrees(leaf), gen_leaf:node4_0(n6_0)) ->_R^Omega(1) 311.45/291.51 subtrees#2(subtrees#1(leaf), gen_leaf:node4_0(n6_0)) ->_R^Omega(1) 311.45/291.51 subtrees#2(nil, gen_leaf:node4_0(n6_0)) ->_R^Omega(1) 311.45/291.51 subtrees#3(subtrees(gen_leaf:node4_0(n6_0)), nil) ->_R^Omega(1) 311.45/291.51 subtrees#3(subtrees#1(gen_leaf:node4_0(n6_0)), nil) ->_IH 311.45/291.51 subtrees#3(gen_:::nil3_0(c7_0), nil) ->_R^Omega(1) 311.45/291.51 ::(append(nil, gen_:::nil3_0(n6_0))) ->_R^Omega(1) 311.45/291.51 ::(append#1(nil, gen_:::nil3_0(n6_0))) ->_R^Omega(1) 311.45/291.51 ::(gen_:::nil3_0(n6_0)) 311.45/291.51 311.45/291.51 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 311.45/291.51 ---------------------------------------- 311.45/291.51 311.45/291.51 (22) 311.45/291.51 Complex Obligation (BEST) 311.45/291.51 311.45/291.51 ---------------------------------------- 311.45/291.51 311.45/291.51 (23) 311.45/291.51 Obligation: 311.45/291.51 Proved the lower bound n^1 for the following obligation: 311.45/291.51 311.45/291.51 Innermost TRS: 311.45/291.51 Rules: 311.45/291.51 append(@l1, @l2) -> append#1(@l1, @l2) 311.45/291.51 append#1(::(@xs), @l2) -> ::(append(@xs, @l2)) 311.45/291.51 append#1(nil, @l2) -> @l2 311.45/291.51 subtrees(@t) -> subtrees#1(@t) 311.45/291.51 subtrees#1(leaf) -> nil 311.45/291.51 subtrees#1(node(@t1, @t2)) -> subtrees#2(subtrees(@t1), @t2) 311.45/291.51 subtrees#2(@l1, @t2) -> subtrees#3(subtrees(@t2), @l1) 311.45/291.51 subtrees#3(@l2, @l1) -> ::(append(@l1, @l2)) 311.45/291.51 311.45/291.51 Types: 311.45/291.51 append :: :::nil -> :::nil -> :::nil 311.45/291.51 append#1 :: :::nil -> :::nil -> :::nil 311.45/291.51 :: :: :::nil -> :::nil 311.45/291.51 nil :: :::nil 311.45/291.51 subtrees :: leaf:node -> :::nil 311.45/291.51 subtrees#1 :: leaf:node -> :::nil 311.45/291.51 leaf :: leaf:node 311.45/291.51 node :: leaf:node -> leaf:node -> leaf:node 311.45/291.51 subtrees#2 :: :::nil -> leaf:node -> :::nil 311.45/291.51 subtrees#3 :: :::nil -> :::nil -> :::nil 311.45/291.51 hole_:::nil1_0 :: :::nil 311.45/291.51 hole_leaf:node2_0 :: leaf:node 311.45/291.51 gen_:::nil3_0 :: Nat -> :::nil 311.45/291.51 gen_leaf:node4_0 :: Nat -> leaf:node 311.45/291.51 311.45/291.51 311.45/291.51 Generator Equations: 311.45/291.51 gen_:::nil3_0(0) <=> nil 311.45/291.51 gen_:::nil3_0(+(x, 1)) <=> ::(gen_:::nil3_0(x)) 311.45/291.51 gen_leaf:node4_0(0) <=> leaf 311.45/291.51 gen_leaf:node4_0(+(x, 1)) <=> node(leaf, gen_leaf:node4_0(x)) 311.45/291.51 311.45/291.51 311.45/291.51 The following defined symbols remain to be analysed: 311.45/291.51 subtrees#1, append, append#1, subtrees 311.45/291.51 311.45/291.51 They will be analysed ascendingly in the following order: 311.45/291.51 append = append#1 311.45/291.51 subtrees = subtrees#1 311.45/291.51 311.45/291.51 ---------------------------------------- 311.45/291.51 311.45/291.51 (24) LowerBoundPropagationProof (FINISHED) 311.45/291.51 Propagated lower bound. 311.45/291.51 ---------------------------------------- 311.45/291.51 311.45/291.51 (25) 311.45/291.51 BOUNDS(n^1, INF) 311.45/291.51 311.45/291.51 ---------------------------------------- 311.45/291.51 311.45/291.51 (26) 311.45/291.51 Obligation: 311.45/291.51 Innermost TRS: 311.45/291.51 Rules: 311.45/291.51 append(@l1, @l2) -> append#1(@l1, @l2) 311.45/291.51 append#1(::(@xs), @l2) -> ::(append(@xs, @l2)) 311.45/291.51 append#1(nil, @l2) -> @l2 311.45/291.51 subtrees(@t) -> subtrees#1(@t) 311.45/291.51 subtrees#1(leaf) -> nil 311.45/291.51 subtrees#1(node(@t1, @t2)) -> subtrees#2(subtrees(@t1), @t2) 311.45/291.51 subtrees#2(@l1, @t2) -> subtrees#3(subtrees(@t2), @l1) 311.45/291.51 subtrees#3(@l2, @l1) -> ::(append(@l1, @l2)) 311.45/291.51 311.45/291.51 Types: 311.45/291.51 append :: :::nil -> :::nil -> :::nil 311.45/291.51 append#1 :: :::nil -> :::nil -> :::nil 311.45/291.51 :: :: :::nil -> :::nil 311.45/291.51 nil :: :::nil 311.45/291.51 subtrees :: leaf:node -> :::nil 311.45/291.51 subtrees#1 :: leaf:node -> :::nil 311.45/291.51 leaf :: leaf:node 311.45/291.51 node :: leaf:node -> leaf:node -> leaf:node 311.45/291.51 subtrees#2 :: :::nil -> leaf:node -> :::nil 311.45/291.51 subtrees#3 :: :::nil -> :::nil -> :::nil 311.45/291.51 hole_:::nil1_0 :: :::nil 311.45/291.51 hole_leaf:node2_0 :: leaf:node 311.45/291.51 gen_:::nil3_0 :: Nat -> :::nil 311.45/291.51 gen_leaf:node4_0 :: Nat -> leaf:node 311.45/291.51 311.45/291.51 311.45/291.51 Lemmas: 311.45/291.51 subtrees#1(gen_leaf:node4_0(n6_0)) -> gen_:::nil3_0(n6_0), rt in Omega(1 + n6_0) 311.45/291.51 311.45/291.51 311.45/291.51 Generator Equations: 311.45/291.51 gen_:::nil3_0(0) <=> nil 311.45/291.51 gen_:::nil3_0(+(x, 1)) <=> ::(gen_:::nil3_0(x)) 311.45/291.51 gen_leaf:node4_0(0) <=> leaf 311.45/291.51 gen_leaf:node4_0(+(x, 1)) <=> node(leaf, gen_leaf:node4_0(x)) 311.45/291.51 311.45/291.51 311.45/291.51 The following defined symbols remain to be analysed: 311.45/291.51 subtrees, append, append#1 311.45/291.51 311.45/291.51 They will be analysed ascendingly in the following order: 311.45/291.51 append = append#1 311.45/291.51 subtrees = subtrees#1 311.45/291.51 311.45/291.51 ---------------------------------------- 311.45/291.51 311.45/291.51 (27) RewriteLemmaProof (LOWER BOUND(ID)) 311.45/291.51 Proved the following rewrite lemma: 311.45/291.51 append#1(gen_:::nil3_0(n383_0), gen_:::nil3_0(b)) -> gen_:::nil3_0(+(n383_0, b)), rt in Omega(1 + n383_0) 311.45/291.51 311.45/291.51 Induction Base: 311.45/291.51 append#1(gen_:::nil3_0(0), gen_:::nil3_0(b)) ->_R^Omega(1) 311.45/291.51 gen_:::nil3_0(b) 311.45/291.51 311.45/291.51 Induction Step: 311.45/291.51 append#1(gen_:::nil3_0(+(n383_0, 1)), gen_:::nil3_0(b)) ->_R^Omega(1) 311.45/291.51 ::(append(gen_:::nil3_0(n383_0), gen_:::nil3_0(b))) ->_R^Omega(1) 311.45/291.51 ::(append#1(gen_:::nil3_0(n383_0), gen_:::nil3_0(b))) ->_IH 311.45/291.51 ::(gen_:::nil3_0(+(b, c384_0))) 311.45/291.51 311.45/291.51 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 311.45/291.51 ---------------------------------------- 311.45/291.51 311.45/291.51 (28) 311.45/291.51 Obligation: 311.45/291.51 Innermost TRS: 311.45/291.51 Rules: 311.45/291.51 append(@l1, @l2) -> append#1(@l1, @l2) 311.45/291.51 append#1(::(@xs), @l2) -> ::(append(@xs, @l2)) 311.45/291.51 append#1(nil, @l2) -> @l2 311.45/291.51 subtrees(@t) -> subtrees#1(@t) 311.45/291.51 subtrees#1(leaf) -> nil 311.45/291.51 subtrees#1(node(@t1, @t2)) -> subtrees#2(subtrees(@t1), @t2) 311.45/291.51 subtrees#2(@l1, @t2) -> subtrees#3(subtrees(@t2), @l1) 311.45/291.51 subtrees#3(@l2, @l1) -> ::(append(@l1, @l2)) 311.45/291.51 311.45/291.51 Types: 311.45/291.51 append :: :::nil -> :::nil -> :::nil 311.45/291.51 append#1 :: :::nil -> :::nil -> :::nil 311.45/291.51 :: :: :::nil -> :::nil 311.45/291.51 nil :: :::nil 311.45/291.51 subtrees :: leaf:node -> :::nil 311.45/291.51 subtrees#1 :: leaf:node -> :::nil 311.45/291.51 leaf :: leaf:node 311.45/291.51 node :: leaf:node -> leaf:node -> leaf:node 311.45/291.51 subtrees#2 :: :::nil -> leaf:node -> :::nil 311.45/291.51 subtrees#3 :: :::nil -> :::nil -> :::nil 311.45/291.51 hole_:::nil1_0 :: :::nil 311.45/291.51 hole_leaf:node2_0 :: leaf:node 311.45/291.51 gen_:::nil3_0 :: Nat -> :::nil 311.45/291.51 gen_leaf:node4_0 :: Nat -> leaf:node 311.45/291.51 311.45/291.51 311.45/291.51 Lemmas: 311.45/291.51 subtrees#1(gen_leaf:node4_0(n6_0)) -> gen_:::nil3_0(n6_0), rt in Omega(1 + n6_0) 311.45/291.51 append#1(gen_:::nil3_0(n383_0), gen_:::nil3_0(b)) -> gen_:::nil3_0(+(n383_0, b)), rt in Omega(1 + n383_0) 311.45/291.51 311.45/291.51 311.45/291.51 Generator Equations: 311.45/291.51 gen_:::nil3_0(0) <=> nil 311.45/291.51 gen_:::nil3_0(+(x, 1)) <=> ::(gen_:::nil3_0(x)) 311.45/291.51 gen_leaf:node4_0(0) <=> leaf 311.45/291.51 gen_leaf:node4_0(+(x, 1)) <=> node(leaf, gen_leaf:node4_0(x)) 311.45/291.51 311.45/291.51 311.45/291.51 The following defined symbols remain to be analysed: 311.45/291.51 append 311.45/291.51 311.45/291.51 They will be analysed ascendingly in the following order: 311.45/291.51 append = append#1 311.45/291.55 EOF