5.00/2.11 WORST_CASE(NON_POLY, ?) 5.00/2.12 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 5.00/2.12 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 5.00/2.12 5.00/2.12 5.00/2.12 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 5.00/2.12 5.00/2.12 (0) CpxTRS 5.00/2.12 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 5.00/2.12 (2) TRS for Loop Detection 5.00/2.12 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 5.00/2.12 (4) BEST 5.00/2.12 (5) proven lower bound 5.00/2.12 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 5.00/2.12 (7) BOUNDS(n^1, INF) 5.00/2.12 (8) TRS for Loop Detection 5.00/2.12 (9) DecreasingLoopProof [FINISHED, 276 ms] 5.00/2.12 (10) BOUNDS(EXP, INF) 5.00/2.12 5.00/2.12 5.00/2.12 ---------------------------------------- 5.00/2.12 5.00/2.12 (0) 5.00/2.12 Obligation: 5.00/2.12 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 5.00/2.12 5.00/2.12 5.00/2.12 The TRS R consists of the following rules: 5.00/2.12 5.00/2.12 minus(0, y) -> 0 5.00/2.12 minus(s(x), 0) -> s(x) 5.00/2.12 minus(s(x), s(y)) -> minus(x, y) 5.00/2.12 le(0, y) -> true 5.00/2.12 le(s(x), 0) -> false 5.00/2.12 le(s(x), s(y)) -> le(x, y) 5.00/2.12 if(true, x, y) -> x 5.00/2.12 if(false, x, y) -> y 5.00/2.12 perfectp(0) -> false 5.00/2.12 perfectp(s(x)) -> f(x, s(0), s(x), s(x)) 5.00/2.12 f(0, y, 0, u) -> true 5.00/2.12 f(0, y, s(z), u) -> false 5.00/2.12 f(s(x), 0, z, u) -> f(x, u, minus(z, s(x)), u) 5.00/2.12 f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u)) 5.00/2.12 5.00/2.12 S is empty. 5.00/2.12 Rewrite Strategy: INNERMOST 5.00/2.12 ---------------------------------------- 5.00/2.12 5.00/2.12 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 5.00/2.12 Transformed a relative TRS into a decreasing-loop problem. 5.00/2.12 ---------------------------------------- 5.00/2.12 5.00/2.12 (2) 5.00/2.12 Obligation: 5.00/2.12 Analyzing the following TRS for decreasing loops: 5.00/2.12 5.00/2.12 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 5.00/2.12 5.00/2.12 5.00/2.12 The TRS R consists of the following rules: 5.00/2.12 5.00/2.12 minus(0, y) -> 0 5.00/2.12 minus(s(x), 0) -> s(x) 5.00/2.12 minus(s(x), s(y)) -> minus(x, y) 5.00/2.12 le(0, y) -> true 5.00/2.12 le(s(x), 0) -> false 5.00/2.12 le(s(x), s(y)) -> le(x, y) 5.00/2.12 if(true, x, y) -> x 5.00/2.12 if(false, x, y) -> y 5.00/2.12 perfectp(0) -> false 5.00/2.12 perfectp(s(x)) -> f(x, s(0), s(x), s(x)) 5.00/2.12 f(0, y, 0, u) -> true 5.00/2.12 f(0, y, s(z), u) -> false 5.00/2.12 f(s(x), 0, z, u) -> f(x, u, minus(z, s(x)), u) 5.00/2.12 f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u)) 5.00/2.12 5.00/2.12 S is empty. 5.00/2.12 Rewrite Strategy: INNERMOST 5.00/2.12 ---------------------------------------- 5.00/2.12 5.00/2.12 (3) DecreasingLoopProof (LOWER BOUND(ID)) 5.00/2.12 The following loop(s) give(s) rise to the lower bound Omega(n^1): 5.00/2.12 5.00/2.12 The rewrite sequence 5.00/2.12 5.00/2.12 le(s(x), s(y)) ->^+ le(x, y) 5.00/2.12 5.00/2.12 gives rise to a decreasing loop by considering the right hand sides subterm at position []. 5.00/2.12 5.00/2.12 The pumping substitution is [x / s(x), y / s(y)]. 5.00/2.12 5.00/2.12 The result substitution is [ ]. 5.00/2.12 5.00/2.12 5.00/2.12 5.00/2.12 5.00/2.12 ---------------------------------------- 5.00/2.12 5.00/2.12 (4) 5.00/2.12 Complex Obligation (BEST) 5.00/2.12 5.00/2.12 ---------------------------------------- 5.00/2.12 5.00/2.12 (5) 5.00/2.12 Obligation: 5.00/2.12 Proved the lower bound n^1 for the following obligation: 5.00/2.12 5.00/2.12 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 5.00/2.12 5.00/2.12 5.00/2.12 The TRS R consists of the following rules: 5.00/2.12 5.00/2.12 minus(0, y) -> 0 5.00/2.12 minus(s(x), 0) -> s(x) 5.00/2.12 minus(s(x), s(y)) -> minus(x, y) 5.00/2.12 le(0, y) -> true 5.00/2.12 le(s(x), 0) -> false 5.00/2.13 le(s(x), s(y)) -> le(x, y) 5.00/2.13 if(true, x, y) -> x 5.00/2.13 if(false, x, y) -> y 5.00/2.13 perfectp(0) -> false 5.00/2.13 perfectp(s(x)) -> f(x, s(0), s(x), s(x)) 5.00/2.13 f(0, y, 0, u) -> true 5.00/2.13 f(0, y, s(z), u) -> false 5.00/2.13 f(s(x), 0, z, u) -> f(x, u, minus(z, s(x)), u) 5.00/2.13 f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u)) 5.00/2.13 5.00/2.13 S is empty. 5.00/2.13 Rewrite Strategy: INNERMOST 5.00/2.13 ---------------------------------------- 5.00/2.13 5.00/2.13 (6) LowerBoundPropagationProof (FINISHED) 5.00/2.13 Propagated lower bound. 5.00/2.13 ---------------------------------------- 5.00/2.13 5.00/2.13 (7) 5.00/2.13 BOUNDS(n^1, INF) 5.00/2.13 5.00/2.13 ---------------------------------------- 5.00/2.13 5.00/2.13 (8) 5.00/2.13 Obligation: 5.00/2.13 Analyzing the following TRS for decreasing loops: 5.00/2.13 5.00/2.13 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 5.00/2.13 5.00/2.13 5.00/2.13 The TRS R consists of the following rules: 5.00/2.13 5.00/2.13 minus(0, y) -> 0 5.00/2.13 minus(s(x), 0) -> s(x) 5.00/2.13 minus(s(x), s(y)) -> minus(x, y) 5.00/2.13 le(0, y) -> true 5.00/2.13 le(s(x), 0) -> false 5.00/2.13 le(s(x), s(y)) -> le(x, y) 5.00/2.13 if(true, x, y) -> x 5.00/2.13 if(false, x, y) -> y 5.00/2.13 perfectp(0) -> false 5.00/2.13 perfectp(s(x)) -> f(x, s(0), s(x), s(x)) 5.00/2.13 f(0, y, 0, u) -> true 5.00/2.13 f(0, y, s(z), u) -> false 5.00/2.13 f(s(x), 0, z, u) -> f(x, u, minus(z, s(x)), u) 5.00/2.13 f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u)) 5.00/2.13 5.00/2.13 S is empty. 5.00/2.13 Rewrite Strategy: INNERMOST 5.00/2.13 ---------------------------------------- 5.00/2.13 5.00/2.13 (9) DecreasingLoopProof (FINISHED) 5.00/2.13 The following loop(s) give(s) rise to the lower bound EXP: 5.00/2.13 5.00/2.13 The rewrite sequence 5.00/2.13 5.00/2.13 f(s(s(x1_0)), s(y), z, s(0)) ->^+ if(le(s(x1_0), y), f(s(s(x1_0)), minus(y, s(x1_0)), z, s(0)), if(le(x1_0, 0), f(x1_0, s(0), minus(z, s(x1_0)), s(0)), f(x1_0, s(0), z, s(0)))) 5.00/2.13 5.00/2.13 gives rise to a decreasing loop by considering the right hand sides subterm at position [2,1]. 5.00/2.13 5.00/2.13 The pumping substitution is [x1_0 / s(s(x1_0))]. 5.00/2.13 5.00/2.13 The result substitution is [y / 0, z / minus(z, s(x1_0))]. 5.00/2.13 5.00/2.13 5.00/2.13 5.00/2.13 The rewrite sequence 5.00/2.13 5.00/2.13 f(s(s(x1_0)), s(y), z, s(0)) ->^+ if(le(s(x1_0), y), f(s(s(x1_0)), minus(y, s(x1_0)), z, s(0)), if(le(x1_0, 0), f(x1_0, s(0), minus(z, s(x1_0)), s(0)), f(x1_0, s(0), z, s(0)))) 5.00/2.13 5.00/2.13 gives rise to a decreasing loop by considering the right hand sides subterm at position [2,2]. 5.00/2.13 5.00/2.13 The pumping substitution is [x1_0 / s(s(x1_0))]. 5.00/2.13 5.00/2.13 The result substitution is [y / 0]. 5.00/2.13 5.00/2.13 5.00/2.13 5.00/2.13 5.00/2.13 ---------------------------------------- 5.00/2.13 5.00/2.13 (10) 5.00/2.13 BOUNDS(EXP, INF) 5.00/2.16 EOF