3.89/1.78 WORST_CASE(Omega(n^1), O(n^1)) 4.20/1.78 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 4.20/1.78 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.20/1.78 4.20/1.78 4.20/1.78 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 4.20/1.78 4.20/1.78 (0) CpxTRS 4.20/1.78 (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] 4.20/1.78 (2) CpxTRS 4.20/1.78 (3) CpxTrsMatchBoundsTAProof [FINISHED, 126 ms] 4.20/1.78 (4) BOUNDS(1, n^1) 4.20/1.78 (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 4.20/1.78 (6) TRS for Loop Detection 4.20/1.78 (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 4.20/1.78 (8) BEST 4.20/1.78 (9) proven lower bound 4.20/1.78 (10) LowerBoundPropagationProof [FINISHED, 0 ms] 4.20/1.78 (11) BOUNDS(n^1, INF) 4.20/1.78 (12) TRS for Loop Detection 4.20/1.78 4.20/1.78 4.20/1.78 ---------------------------------------- 4.20/1.78 4.20/1.78 (0) 4.20/1.78 Obligation: 4.20/1.78 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 4.20/1.78 4.20/1.78 4.20/1.78 The TRS R consists of the following rules: 4.20/1.78 4.20/1.78 a__f(0) -> cons(0, f(s(0))) 4.20/1.78 a__f(s(0)) -> a__f(a__p(s(0))) 4.20/1.78 a__p(s(0)) -> 0 4.20/1.78 mark(f(X)) -> a__f(mark(X)) 4.20/1.78 mark(p(X)) -> a__p(mark(X)) 4.20/1.78 mark(0) -> 0 4.20/1.78 mark(cons(X1, X2)) -> cons(mark(X1), X2) 4.20/1.78 mark(s(X)) -> s(mark(X)) 4.20/1.78 a__f(X) -> f(X) 4.20/1.78 a__p(X) -> p(X) 4.20/1.78 4.20/1.78 S is empty. 4.20/1.78 Rewrite Strategy: INNERMOST 4.20/1.78 ---------------------------------------- 4.20/1.78 4.20/1.78 (1) RelTrsToTrsProof (UPPER BOUND(ID)) 4.20/1.78 transformed relative TRS to TRS 4.20/1.78 ---------------------------------------- 4.20/1.78 4.20/1.78 (2) 4.20/1.78 Obligation: 4.20/1.78 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). 4.20/1.78 4.20/1.78 4.20/1.78 The TRS R consists of the following rules: 4.20/1.78 4.20/1.78 a__f(0) -> cons(0, f(s(0))) 4.20/1.78 a__f(s(0)) -> a__f(a__p(s(0))) 4.20/1.78 a__p(s(0)) -> 0 4.20/1.78 mark(f(X)) -> a__f(mark(X)) 4.20/1.78 mark(p(X)) -> a__p(mark(X)) 4.20/1.78 mark(0) -> 0 4.20/1.78 mark(cons(X1, X2)) -> cons(mark(X1), X2) 4.20/1.78 mark(s(X)) -> s(mark(X)) 4.20/1.78 a__f(X) -> f(X) 4.20/1.78 a__p(X) -> p(X) 4.20/1.78 4.20/1.78 S is empty. 4.20/1.78 Rewrite Strategy: INNERMOST 4.20/1.78 ---------------------------------------- 4.20/1.78 4.20/1.78 (3) CpxTrsMatchBoundsTAProof (FINISHED) 4.20/1.78 A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 3. 4.20/1.78 4.20/1.78 The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: 4.20/1.78 final states : [1, 2, 3] 4.20/1.78 transitions: 4.20/1.78 00() -> 0 4.20/1.78 cons0(0, 0) -> 0 4.20/1.78 f0(0) -> 0 4.20/1.78 s0(0) -> 0 4.20/1.78 p0(0) -> 0 4.20/1.78 a__f0(0) -> 1 4.20/1.78 a__p0(0) -> 2 4.20/1.78 mark0(0) -> 3 4.20/1.78 01() -> 4 4.20/1.78 01() -> 7 4.20/1.78 s1(7) -> 6 4.20/1.78 f1(6) -> 5 4.20/1.78 cons1(4, 5) -> 1 4.20/1.78 s1(7) -> 9 4.20/1.78 a__p1(9) -> 8 4.20/1.78 a__f1(8) -> 1 4.20/1.78 01() -> 2 4.20/1.78 mark1(0) -> 10 4.20/1.78 a__f1(10) -> 3 4.20/1.78 mark1(0) -> 11 4.20/1.78 a__p1(11) -> 3 4.20/1.78 01() -> 3 4.20/1.78 mark1(0) -> 12 4.20/1.78 cons1(12, 0) -> 3 4.20/1.78 mark1(0) -> 13 4.20/1.78 s1(13) -> 3 4.20/1.78 f1(0) -> 1 4.20/1.78 p1(0) -> 2 4.20/1.78 02() -> 8 4.20/1.78 a__f1(10) -> 10 4.20/1.78 a__f1(10) -> 11 4.20/1.78 a__f1(10) -> 12 4.20/1.78 a__f1(10) -> 13 4.20/1.78 a__p1(11) -> 10 4.20/1.78 a__p1(11) -> 11 4.20/1.78 a__p1(11) -> 12 4.20/1.78 a__p1(11) -> 13 4.20/1.78 01() -> 10 4.20/1.78 01() -> 11 4.20/1.78 01() -> 12 4.20/1.78 01() -> 13 4.20/1.78 cons1(12, 0) -> 10 4.20/1.78 cons1(12, 0) -> 11 4.20/1.78 cons1(12, 0) -> 12 4.20/1.78 cons1(12, 0) -> 13 4.20/1.78 s1(13) -> 10 4.20/1.78 s1(13) -> 11 4.20/1.78 s1(13) -> 12 4.20/1.78 s1(13) -> 13 4.20/1.78 f2(8) -> 1 4.20/1.78 f2(10) -> 3 4.20/1.78 p2(11) -> 3 4.20/1.78 p2(9) -> 8 4.20/1.78 02() -> 14 4.20/1.78 02() -> 17 4.20/1.78 s2(17) -> 16 4.20/1.78 f2(16) -> 15 4.20/1.78 cons2(14, 15) -> 3 4.20/1.78 cons2(14, 15) -> 10 4.20/1.78 cons2(14, 15) -> 11 4.20/1.78 cons2(14, 15) -> 12 4.20/1.78 cons2(14, 15) -> 13 4.20/1.78 s2(17) -> 19 4.20/1.78 a__p2(19) -> 18 4.20/1.78 a__f2(18) -> 3 4.20/1.78 a__f2(18) -> 10 4.20/1.78 a__f2(18) -> 11 4.20/1.78 a__f2(18) -> 12 4.20/1.78 a__f2(18) -> 13 4.20/1.78 02() -> 3 4.20/1.78 02() -> 10 4.20/1.78 02() -> 11 4.20/1.78 02() -> 12 4.20/1.78 02() -> 13 4.20/1.78 f2(10) -> 10 4.20/1.78 f2(10) -> 11 4.20/1.78 f2(10) -> 12 4.20/1.78 f2(10) -> 13 4.20/1.78 p2(11) -> 10 4.20/1.78 p2(11) -> 11 4.20/1.78 p2(11) -> 12 4.20/1.78 p2(11) -> 13 4.20/1.78 cons2(14, 15) -> 1 4.20/1.78 03() -> 18 4.20/1.78 f3(18) -> 3 4.20/1.78 f3(18) -> 10 4.20/1.78 f3(18) -> 11 4.20/1.78 f3(18) -> 12 4.20/1.78 f3(18) -> 13 4.20/1.78 p3(19) -> 18 4.20/1.78 03() -> 20 4.20/1.78 03() -> 23 4.20/1.78 s3(23) -> 22 4.20/1.78 f3(22) -> 21 4.20/1.78 cons3(20, 21) -> 3 4.20/1.78 cons3(20, 21) -> 10 4.20/1.78 cons3(20, 21) -> 11 4.20/1.78 cons3(20, 21) -> 12 4.20/1.78 cons3(20, 21) -> 13 4.20/1.78 4.20/1.78 ---------------------------------------- 4.20/1.78 4.20/1.78 (4) 4.20/1.78 BOUNDS(1, n^1) 4.20/1.78 4.20/1.78 ---------------------------------------- 4.20/1.78 4.20/1.78 (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 4.20/1.78 Transformed a relative TRS into a decreasing-loop problem. 4.20/1.78 ---------------------------------------- 4.20/1.78 4.20/1.78 (6) 4.20/1.78 Obligation: 4.20/1.78 Analyzing the following TRS for decreasing loops: 4.20/1.78 4.20/1.78 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 4.20/1.78 4.20/1.78 4.20/1.78 The TRS R consists of the following rules: 4.20/1.78 4.20/1.78 a__f(0) -> cons(0, f(s(0))) 4.20/1.78 a__f(s(0)) -> a__f(a__p(s(0))) 4.20/1.78 a__p(s(0)) -> 0 4.20/1.78 mark(f(X)) -> a__f(mark(X)) 4.20/1.78 mark(p(X)) -> a__p(mark(X)) 4.20/1.78 mark(0) -> 0 4.20/1.78 mark(cons(X1, X2)) -> cons(mark(X1), X2) 4.20/1.78 mark(s(X)) -> s(mark(X)) 4.20/1.78 a__f(X) -> f(X) 4.20/1.78 a__p(X) -> p(X) 4.20/1.78 4.20/1.78 S is empty. 4.20/1.78 Rewrite Strategy: INNERMOST 4.20/1.78 ---------------------------------------- 4.20/1.78 4.20/1.78 (7) DecreasingLoopProof (LOWER BOUND(ID)) 4.20/1.78 The following loop(s) give(s) rise to the lower bound Omega(n^1): 4.20/1.78 4.20/1.78 The rewrite sequence 4.20/1.78 4.20/1.78 mark(f(X)) ->^+ a__f(mark(X)) 4.20/1.78 4.20/1.78 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 4.20/1.78 4.20/1.78 The pumping substitution is [X / f(X)]. 4.20/1.78 4.20/1.78 The result substitution is [ ]. 4.20/1.78 4.20/1.78 4.20/1.78 4.20/1.78 4.20/1.78 ---------------------------------------- 4.20/1.78 4.20/1.78 (8) 4.20/1.78 Complex Obligation (BEST) 4.20/1.78 4.20/1.78 ---------------------------------------- 4.20/1.78 4.20/1.78 (9) 4.20/1.78 Obligation: 4.20/1.78 Proved the lower bound n^1 for the following obligation: 4.20/1.78 4.20/1.78 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 4.20/1.78 4.20/1.78 4.20/1.78 The TRS R consists of the following rules: 4.20/1.78 4.20/1.78 a__f(0) -> cons(0, f(s(0))) 4.20/1.78 a__f(s(0)) -> a__f(a__p(s(0))) 4.20/1.78 a__p(s(0)) -> 0 4.20/1.78 mark(f(X)) -> a__f(mark(X)) 4.20/1.78 mark(p(X)) -> a__p(mark(X)) 4.20/1.78 mark(0) -> 0 4.20/1.78 mark(cons(X1, X2)) -> cons(mark(X1), X2) 4.20/1.78 mark(s(X)) -> s(mark(X)) 4.20/1.78 a__f(X) -> f(X) 4.20/1.78 a__p(X) -> p(X) 4.20/1.78 4.20/1.78 S is empty. 4.20/1.78 Rewrite Strategy: INNERMOST 4.20/1.78 ---------------------------------------- 4.20/1.78 4.20/1.78 (10) LowerBoundPropagationProof (FINISHED) 4.20/1.78 Propagated lower bound. 4.20/1.78 ---------------------------------------- 4.20/1.78 4.20/1.78 (11) 4.20/1.78 BOUNDS(n^1, INF) 4.20/1.78 4.20/1.78 ---------------------------------------- 4.20/1.78 4.20/1.78 (12) 4.20/1.78 Obligation: 4.20/1.78 Analyzing the following TRS for decreasing loops: 4.20/1.78 4.20/1.78 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 4.20/1.78 4.20/1.78 4.20/1.78 The TRS R consists of the following rules: 4.20/1.78 4.20/1.78 a__f(0) -> cons(0, f(s(0))) 4.20/1.78 a__f(s(0)) -> a__f(a__p(s(0))) 4.20/1.78 a__p(s(0)) -> 0 4.20/1.78 mark(f(X)) -> a__f(mark(X)) 4.20/1.78 mark(p(X)) -> a__p(mark(X)) 4.20/1.78 mark(0) -> 0 4.20/1.78 mark(cons(X1, X2)) -> cons(mark(X1), X2) 4.20/1.78 mark(s(X)) -> s(mark(X)) 4.20/1.78 a__f(X) -> f(X) 4.20/1.78 a__p(X) -> p(X) 4.20/1.79 4.20/1.79 S is empty. 4.20/1.79 Rewrite Strategy: INNERMOST 4.23/1.81 EOF