3.98/1.76 WORST_CASE(NON_POLY, ?) 3.98/1.77 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.98/1.77 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.98/1.77 3.98/1.77 3.98/1.77 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.98/1.77 3.98/1.77 (0) CpxTRS 3.98/1.77 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.98/1.77 (2) TRS for Loop Detection 3.98/1.77 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.98/1.77 (4) BEST 3.98/1.77 (5) proven lower bound 3.98/1.77 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 3.98/1.77 (7) BOUNDS(n^1, INF) 3.98/1.77 (8) TRS for Loop Detection 3.98/1.77 (9) InfiniteLowerBoundProof [FINISHED, 66 ms] 3.98/1.77 (10) BOUNDS(INF, INF) 3.98/1.77 3.98/1.77 3.98/1.77 ---------------------------------------- 3.98/1.77 3.98/1.77 (0) 3.98/1.77 Obligation: 3.98/1.77 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.98/1.77 3.98/1.77 3.98/1.77 The TRS R consists of the following rules: 3.98/1.77 3.98/1.77 a__zeros -> cons(0, zeros) 3.98/1.77 a__and(tt, X) -> mark(X) 3.98/1.77 a__length(nil) -> 0 3.98/1.77 a__length(cons(N, L)) -> s(a__length(mark(L))) 3.98/1.77 mark(zeros) -> a__zeros 3.98/1.77 mark(and(X1, X2)) -> a__and(mark(X1), X2) 3.98/1.77 mark(length(X)) -> a__length(mark(X)) 3.98/1.77 mark(cons(X1, X2)) -> cons(mark(X1), X2) 3.98/1.77 mark(0) -> 0 3.98/1.77 mark(tt) -> tt 3.98/1.77 mark(nil) -> nil 3.98/1.77 mark(s(X)) -> s(mark(X)) 3.98/1.77 a__zeros -> zeros 3.98/1.77 a__and(X1, X2) -> and(X1, X2) 3.98/1.77 a__length(X) -> length(X) 3.98/1.77 3.98/1.77 S is empty. 3.98/1.77 Rewrite Strategy: INNERMOST 3.98/1.77 ---------------------------------------- 3.98/1.77 3.98/1.77 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.98/1.77 Transformed a relative TRS into a decreasing-loop problem. 3.98/1.77 ---------------------------------------- 3.98/1.77 3.98/1.77 (2) 3.98/1.77 Obligation: 3.98/1.77 Analyzing the following TRS for decreasing loops: 3.98/1.77 3.98/1.77 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.98/1.77 3.98/1.77 3.98/1.77 The TRS R consists of the following rules: 3.98/1.77 3.98/1.77 a__zeros -> cons(0, zeros) 3.98/1.77 a__and(tt, X) -> mark(X) 3.98/1.77 a__length(nil) -> 0 3.98/1.77 a__length(cons(N, L)) -> s(a__length(mark(L))) 3.98/1.77 mark(zeros) -> a__zeros 3.98/1.77 mark(and(X1, X2)) -> a__and(mark(X1), X2) 3.98/1.77 mark(length(X)) -> a__length(mark(X)) 3.98/1.77 mark(cons(X1, X2)) -> cons(mark(X1), X2) 3.98/1.77 mark(0) -> 0 3.98/1.77 mark(tt) -> tt 3.98/1.77 mark(nil) -> nil 3.98/1.77 mark(s(X)) -> s(mark(X)) 3.98/1.77 a__zeros -> zeros 3.98/1.77 a__and(X1, X2) -> and(X1, X2) 3.98/1.77 a__length(X) -> length(X) 3.98/1.77 3.98/1.77 S is empty. 3.98/1.77 Rewrite Strategy: INNERMOST 3.98/1.77 ---------------------------------------- 3.98/1.77 3.98/1.77 (3) DecreasingLoopProof (LOWER BOUND(ID)) 3.98/1.77 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.98/1.77 3.98/1.77 The rewrite sequence 3.98/1.77 3.98/1.77 mark(length(X)) ->^+ a__length(mark(X)) 3.98/1.77 3.98/1.77 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.98/1.77 3.98/1.77 The pumping substitution is [X / length(X)]. 3.98/1.77 3.98/1.77 The result substitution is [ ]. 3.98/1.77 3.98/1.77 3.98/1.77 3.98/1.77 3.98/1.77 ---------------------------------------- 3.98/1.77 3.98/1.77 (4) 3.98/1.77 Complex Obligation (BEST) 3.98/1.77 3.98/1.77 ---------------------------------------- 3.98/1.77 3.98/1.77 (5) 3.98/1.77 Obligation: 3.98/1.77 Proved the lower bound n^1 for the following obligation: 3.98/1.77 3.98/1.77 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.98/1.77 3.98/1.77 3.98/1.77 The TRS R consists of the following rules: 3.98/1.77 3.98/1.77 a__zeros -> cons(0, zeros) 3.98/1.77 a__and(tt, X) -> mark(X) 3.98/1.77 a__length(nil) -> 0 3.98/1.77 a__length(cons(N, L)) -> s(a__length(mark(L))) 3.98/1.77 mark(zeros) -> a__zeros 3.98/1.77 mark(and(X1, X2)) -> a__and(mark(X1), X2) 3.98/1.77 mark(length(X)) -> a__length(mark(X)) 3.98/1.77 mark(cons(X1, X2)) -> cons(mark(X1), X2) 3.98/1.77 mark(0) -> 0 3.98/1.77 mark(tt) -> tt 3.98/1.77 mark(nil) -> nil 3.98/1.77 mark(s(X)) -> s(mark(X)) 3.98/1.77 a__zeros -> zeros 3.98/1.77 a__and(X1, X2) -> and(X1, X2) 3.98/1.77 a__length(X) -> length(X) 3.98/1.77 3.98/1.77 S is empty. 3.98/1.77 Rewrite Strategy: INNERMOST 3.98/1.77 ---------------------------------------- 3.98/1.77 3.98/1.77 (6) LowerBoundPropagationProof (FINISHED) 3.98/1.77 Propagated lower bound. 3.98/1.77 ---------------------------------------- 3.98/1.77 3.98/1.77 (7) 3.98/1.77 BOUNDS(n^1, INF) 3.98/1.77 3.98/1.77 ---------------------------------------- 3.98/1.77 3.98/1.77 (8) 3.98/1.77 Obligation: 3.98/1.77 Analyzing the following TRS for decreasing loops: 3.98/1.77 3.98/1.77 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.98/1.77 3.98/1.77 3.98/1.77 The TRS R consists of the following rules: 3.98/1.77 3.98/1.77 a__zeros -> cons(0, zeros) 3.98/1.77 a__and(tt, X) -> mark(X) 3.98/1.77 a__length(nil) -> 0 3.98/1.77 a__length(cons(N, L)) -> s(a__length(mark(L))) 3.98/1.77 mark(zeros) -> a__zeros 3.98/1.77 mark(and(X1, X2)) -> a__and(mark(X1), X2) 3.98/1.77 mark(length(X)) -> a__length(mark(X)) 3.98/1.77 mark(cons(X1, X2)) -> cons(mark(X1), X2) 3.98/1.77 mark(0) -> 0 3.98/1.77 mark(tt) -> tt 3.98/1.77 mark(nil) -> nil 3.98/1.77 mark(s(X)) -> s(mark(X)) 3.98/1.77 a__zeros -> zeros 3.98/1.77 a__and(X1, X2) -> and(X1, X2) 3.98/1.77 a__length(X) -> length(X) 3.98/1.77 3.98/1.77 S is empty. 3.98/1.77 Rewrite Strategy: INNERMOST 3.98/1.77 ---------------------------------------- 3.98/1.77 3.98/1.77 (9) InfiniteLowerBoundProof (FINISHED) 3.98/1.77 The following loop proves infinite runtime complexity: 3.98/1.77 3.98/1.77 The rewrite sequence 3.98/1.77 3.98/1.77 a__length(cons(N, zeros)) ->^+ s(a__length(cons(0, zeros))) 3.98/1.77 3.98/1.77 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.98/1.77 3.98/1.77 The pumping substitution is [ ]. 3.98/1.77 3.98/1.77 The result substitution is [N / 0]. 3.98/1.77 3.98/1.77 3.98/1.77 3.98/1.77 3.98/1.77 ---------------------------------------- 3.98/1.77 3.98/1.77 (10) 3.98/1.77 BOUNDS(INF, INF) 4.18/1.80 EOF