3.89/1.72 WORST_CASE(NON_POLY, ?) 3.89/1.74 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.89/1.74 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.89/1.74 3.89/1.74 3.89/1.74 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.89/1.74 3.89/1.74 (0) CpxTRS 3.89/1.74 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.89/1.74 (2) TRS for Loop Detection 3.89/1.74 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.89/1.74 (4) BEST 3.89/1.74 (5) proven lower bound 3.89/1.74 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 3.89/1.74 (7) BOUNDS(n^1, INF) 3.89/1.74 (8) TRS for Loop Detection 3.89/1.74 (9) InfiniteLowerBoundProof [FINISHED, 28 ms] 3.89/1.74 (10) BOUNDS(INF, INF) 3.89/1.74 3.89/1.74 3.89/1.74 ---------------------------------------- 3.89/1.74 3.89/1.74 (0) 3.89/1.74 Obligation: 3.89/1.74 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.89/1.74 3.89/1.74 3.89/1.74 The TRS R consists of the following rules: 3.89/1.74 3.89/1.74 zeros -> cons(0, n__zeros) 3.89/1.74 and(tt, X) -> activate(X) 3.89/1.74 length(nil) -> 0 3.89/1.74 length(cons(N, L)) -> s(length(activate(L))) 3.89/1.74 take(0, IL) -> nil 3.89/1.74 take(s(M), cons(N, IL)) -> cons(N, n__take(M, activate(IL))) 3.89/1.74 zeros -> n__zeros 3.89/1.74 take(X1, X2) -> n__take(X1, X2) 3.89/1.74 activate(n__zeros) -> zeros 3.89/1.74 activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) 3.89/1.74 activate(X) -> X 3.89/1.74 3.89/1.74 S is empty. 3.89/1.74 Rewrite Strategy: INNERMOST 3.89/1.74 ---------------------------------------- 3.89/1.74 3.89/1.74 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.89/1.74 Transformed a relative TRS into a decreasing-loop problem. 3.89/1.74 ---------------------------------------- 3.89/1.74 3.89/1.74 (2) 3.89/1.74 Obligation: 3.89/1.74 Analyzing the following TRS for decreasing loops: 3.89/1.74 3.89/1.74 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.89/1.74 3.89/1.74 3.89/1.74 The TRS R consists of the following rules: 3.89/1.74 3.89/1.74 zeros -> cons(0, n__zeros) 3.89/1.74 and(tt, X) -> activate(X) 3.89/1.74 length(nil) -> 0 3.89/1.74 length(cons(N, L)) -> s(length(activate(L))) 3.89/1.74 take(0, IL) -> nil 3.89/1.74 take(s(M), cons(N, IL)) -> cons(N, n__take(M, activate(IL))) 3.89/1.74 zeros -> n__zeros 3.89/1.74 take(X1, X2) -> n__take(X1, X2) 3.89/1.74 activate(n__zeros) -> zeros 3.89/1.74 activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) 3.89/1.74 activate(X) -> X 3.89/1.74 3.89/1.74 S is empty. 3.89/1.74 Rewrite Strategy: INNERMOST 3.89/1.74 ---------------------------------------- 3.89/1.74 3.89/1.74 (3) DecreasingLoopProof (LOWER BOUND(ID)) 3.89/1.74 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.89/1.74 3.89/1.74 The rewrite sequence 3.89/1.74 3.89/1.74 activate(n__take(X1, X2)) ->^+ take(activate(X1), activate(X2)) 3.89/1.74 3.89/1.74 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.89/1.74 3.89/1.74 The pumping substitution is [X1 / n__take(X1, X2)]. 3.89/1.74 3.89/1.74 The result substitution is [ ]. 3.89/1.74 3.89/1.74 3.89/1.74 3.89/1.74 3.89/1.74 ---------------------------------------- 3.89/1.74 3.89/1.74 (4) 3.89/1.74 Complex Obligation (BEST) 3.89/1.74 3.89/1.74 ---------------------------------------- 3.89/1.74 3.89/1.74 (5) 3.89/1.74 Obligation: 3.89/1.74 Proved the lower bound n^1 for the following obligation: 3.89/1.74 3.89/1.74 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.89/1.74 3.89/1.74 3.89/1.74 The TRS R consists of the following rules: 3.89/1.74 3.89/1.74 zeros -> cons(0, n__zeros) 3.89/1.74 and(tt, X) -> activate(X) 3.89/1.74 length(nil) -> 0 3.89/1.74 length(cons(N, L)) -> s(length(activate(L))) 3.89/1.74 take(0, IL) -> nil 3.89/1.74 take(s(M), cons(N, IL)) -> cons(N, n__take(M, activate(IL))) 3.89/1.74 zeros -> n__zeros 3.89/1.74 take(X1, X2) -> n__take(X1, X2) 3.89/1.74 activate(n__zeros) -> zeros 3.89/1.74 activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) 3.89/1.74 activate(X) -> X 3.89/1.74 3.89/1.74 S is empty. 3.89/1.74 Rewrite Strategy: INNERMOST 3.89/1.74 ---------------------------------------- 3.89/1.74 3.89/1.74 (6) LowerBoundPropagationProof (FINISHED) 3.89/1.74 Propagated lower bound. 3.89/1.74 ---------------------------------------- 3.89/1.74 3.89/1.74 (7) 3.89/1.74 BOUNDS(n^1, INF) 3.89/1.74 3.89/1.74 ---------------------------------------- 3.89/1.74 3.89/1.74 (8) 3.89/1.74 Obligation: 3.89/1.74 Analyzing the following TRS for decreasing loops: 3.89/1.74 3.89/1.74 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.89/1.74 3.89/1.74 3.89/1.74 The TRS R consists of the following rules: 3.89/1.74 3.89/1.74 zeros -> cons(0, n__zeros) 3.89/1.74 and(tt, X) -> activate(X) 3.89/1.74 length(nil) -> 0 3.89/1.74 length(cons(N, L)) -> s(length(activate(L))) 3.89/1.74 take(0, IL) -> nil 3.89/1.74 take(s(M), cons(N, IL)) -> cons(N, n__take(M, activate(IL))) 3.89/1.74 zeros -> n__zeros 3.89/1.74 take(X1, X2) -> n__take(X1, X2) 3.89/1.74 activate(n__zeros) -> zeros 3.89/1.74 activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) 3.89/1.74 activate(X) -> X 3.89/1.74 3.89/1.74 S is empty. 3.89/1.74 Rewrite Strategy: INNERMOST 3.89/1.74 ---------------------------------------- 3.89/1.74 3.89/1.74 (9) InfiniteLowerBoundProof (FINISHED) 3.89/1.74 The following loop proves infinite runtime complexity: 3.89/1.74 3.89/1.74 The rewrite sequence 3.89/1.74 3.89/1.74 length(cons(N, n__zeros)) ->^+ s(length(cons(0, n__zeros))) 3.89/1.74 3.89/1.74 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.89/1.74 3.89/1.74 The pumping substitution is [ ]. 3.89/1.74 3.89/1.74 The result substitution is [N / 0]. 3.89/1.74 3.89/1.74 3.89/1.74 3.89/1.74 3.89/1.74 ---------------------------------------- 3.89/1.74 3.89/1.74 (10) 3.89/1.74 BOUNDS(INF, INF) 4.07/1.77 EOF