20.11/6.58 WORST_CASE(Omega(n^1), O(n^1)) 20.11/6.59 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 20.11/6.59 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 20.11/6.59 20.11/6.59 20.11/6.59 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 20.11/6.59 20.11/6.59 (0) CpxTRS 20.11/6.59 (1) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 1 ms] 20.11/6.59 (2) CpxWeightedTrs 20.11/6.59 (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 20.11/6.59 (4) CpxTypedWeightedTrs 20.11/6.59 (5) CompletionProof [UPPER BOUND(ID), 0 ms] 20.11/6.59 (6) CpxTypedWeightedCompleteTrs 20.11/6.59 (7) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] 20.11/6.59 (8) CpxTypedWeightedCompleteTrs 20.11/6.59 (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] 20.11/6.59 (10) CpxRNTS 20.11/6.59 (11) InliningProof [UPPER BOUND(ID), 107 ms] 20.11/6.59 (12) CpxRNTS 20.11/6.59 (13) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] 20.11/6.59 (14) CpxRNTS 20.11/6.59 (15) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] 20.11/6.59 (16) CpxRNTS 20.11/6.59 (17) ResultPropagationProof [UPPER BOUND(ID), 0 ms] 20.11/6.59 (18) CpxRNTS 20.11/6.59 (19) IntTrsBoundProof [UPPER BOUND(ID), 121 ms] 20.11/6.59 (20) CpxRNTS 20.11/6.59 (21) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] 20.11/6.59 (22) CpxRNTS 20.11/6.59 (23) ResultPropagationProof [UPPER BOUND(ID), 0 ms] 20.11/6.59 (24) CpxRNTS 20.11/6.59 (25) IntTrsBoundProof [UPPER BOUND(ID), 437 ms] 20.11/6.59 (26) CpxRNTS 20.11/6.59 (27) IntTrsBoundProof [UPPER BOUND(ID), 158 ms] 20.11/6.59 (28) CpxRNTS 20.11/6.59 (29) ResultPropagationProof [UPPER BOUND(ID), 0 ms] 20.11/6.59 (30) CpxRNTS 20.11/6.59 (31) IntTrsBoundProof [UPPER BOUND(ID), 168 ms] 20.11/6.59 (32) CpxRNTS 20.11/6.59 (33) IntTrsBoundProof [UPPER BOUND(ID), 46 ms] 20.11/6.59 (34) CpxRNTS 20.11/6.59 (35) FinalProof [FINISHED, 0 ms] 20.11/6.59 (36) BOUNDS(1, n^1) 20.11/6.59 (37) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 20.11/6.59 (38) TRS for Loop Detection 20.11/6.59 (39) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 20.11/6.59 (40) BEST 20.11/6.59 (41) proven lower bound 20.11/6.59 (42) LowerBoundPropagationProof [FINISHED, 0 ms] 20.11/6.59 (43) BOUNDS(n^1, INF) 20.11/6.59 (44) TRS for Loop Detection 20.11/6.59 20.11/6.59 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (0) 20.11/6.59 Obligation: 20.11/6.59 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 20.11/6.59 20.11/6.59 20.11/6.59 The TRS R consists of the following rules: 20.11/6.59 20.11/6.59 from(X) -> cons(X, n__from(s(X))) 20.11/6.59 sel(0, cons(X, Y)) -> X 20.11/6.59 sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) 20.11/6.59 from(X) -> n__from(X) 20.11/6.59 activate(n__from(X)) -> from(X) 20.11/6.59 activate(X) -> X 20.11/6.59 20.11/6.59 S is empty. 20.11/6.59 Rewrite Strategy: INNERMOST 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (1) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) 20.11/6.59 Transformed relative TRS to weighted TRS 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (2) 20.11/6.59 Obligation: 20.11/6.59 The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). 20.11/6.59 20.11/6.59 20.11/6.59 The TRS R consists of the following rules: 20.11/6.59 20.11/6.59 from(X) -> cons(X, n__from(s(X))) [1] 20.11/6.59 sel(0, cons(X, Y)) -> X [1] 20.11/6.59 sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) [1] 20.11/6.59 from(X) -> n__from(X) [1] 20.11/6.59 activate(n__from(X)) -> from(X) [1] 20.11/6.59 activate(X) -> X [1] 20.11/6.59 20.11/6.59 Rewrite Strategy: INNERMOST 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 20.11/6.59 Infered types. 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (4) 20.11/6.59 Obligation: 20.11/6.59 Runtime Complexity Weighted TRS with Types. 20.11/6.59 The TRS R consists of the following rules: 20.11/6.59 20.11/6.59 from(X) -> cons(X, n__from(s(X))) [1] 20.11/6.59 sel(0, cons(X, Y)) -> X [1] 20.11/6.59 sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) [1] 20.11/6.59 from(X) -> n__from(X) [1] 20.11/6.59 activate(n__from(X)) -> from(X) [1] 20.11/6.59 activate(X) -> X [1] 20.11/6.59 20.11/6.59 The TRS has the following type information: 20.11/6.59 from :: s:0 -> n__from:cons 20.11/6.59 cons :: s:0 -> n__from:cons -> n__from:cons 20.11/6.59 n__from :: s:0 -> n__from:cons 20.11/6.59 s :: s:0 -> s:0 20.11/6.59 sel :: s:0 -> n__from:cons -> s:0 20.11/6.59 0 :: s:0 20.11/6.59 activate :: n__from:cons -> n__from:cons 20.11/6.59 20.11/6.59 Rewrite Strategy: INNERMOST 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (5) CompletionProof (UPPER BOUND(ID)) 20.11/6.59 The transformation into a RNTS is sound, since: 20.11/6.59 20.11/6.59 (a) The obligation is a constructor system where every type has a constant constructor, 20.11/6.59 20.11/6.59 (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: 20.11/6.59 20.11/6.59 sel_2 20.11/6.59 20.11/6.59 (c) The following functions are completely defined: 20.11/6.59 20.11/6.59 activate_1 20.11/6.59 from_1 20.11/6.59 20.11/6.59 Due to the following rules being added: 20.11/6.59 none 20.11/6.59 20.11/6.59 And the following fresh constants: const 20.11/6.59 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (6) 20.11/6.59 Obligation: 20.11/6.59 Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: 20.11/6.59 20.11/6.59 Runtime Complexity Weighted TRS with Types. 20.11/6.59 The TRS R consists of the following rules: 20.11/6.59 20.11/6.59 from(X) -> cons(X, n__from(s(X))) [1] 20.11/6.59 sel(0, cons(X, Y)) -> X [1] 20.11/6.59 sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) [1] 20.11/6.59 from(X) -> n__from(X) [1] 20.11/6.59 activate(n__from(X)) -> from(X) [1] 20.11/6.59 activate(X) -> X [1] 20.11/6.59 20.11/6.59 The TRS has the following type information: 20.11/6.59 from :: s:0 -> n__from:cons 20.11/6.59 cons :: s:0 -> n__from:cons -> n__from:cons 20.11/6.59 n__from :: s:0 -> n__from:cons 20.11/6.59 s :: s:0 -> s:0 20.11/6.59 sel :: s:0 -> n__from:cons -> s:0 20.11/6.59 0 :: s:0 20.11/6.59 activate :: n__from:cons -> n__from:cons 20.11/6.59 const :: n__from:cons 20.11/6.59 20.11/6.59 Rewrite Strategy: INNERMOST 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (7) NarrowingProof (BOTH BOUNDS(ID, ID)) 20.11/6.59 Narrowed the inner basic terms of all right-hand sides by a single narrowing step. 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (8) 20.11/6.59 Obligation: 20.11/6.59 Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: 20.11/6.59 20.11/6.59 Runtime Complexity Weighted TRS with Types. 20.11/6.59 The TRS R consists of the following rules: 20.11/6.59 20.11/6.59 from(X) -> cons(X, n__from(s(X))) [1] 20.11/6.59 sel(0, cons(X, Y)) -> X [1] 20.11/6.59 sel(s(X), cons(Y, n__from(X'))) -> sel(X, from(X')) [2] 20.11/6.59 sel(s(X), cons(Y, Z)) -> sel(X, Z) [2] 20.11/6.59 from(X) -> n__from(X) [1] 20.11/6.59 activate(n__from(X)) -> from(X) [1] 20.11/6.59 activate(X) -> X [1] 20.11/6.59 20.11/6.59 The TRS has the following type information: 20.11/6.59 from :: s:0 -> n__from:cons 20.11/6.59 cons :: s:0 -> n__from:cons -> n__from:cons 20.11/6.59 n__from :: s:0 -> n__from:cons 20.11/6.59 s :: s:0 -> s:0 20.11/6.59 sel :: s:0 -> n__from:cons -> s:0 20.11/6.59 0 :: s:0 20.11/6.59 activate :: n__from:cons -> n__from:cons 20.11/6.59 const :: n__from:cons 20.11/6.59 20.11/6.59 Rewrite Strategy: INNERMOST 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) 20.11/6.59 Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. 20.11/6.59 The constant constructors are abstracted as follows: 20.11/6.59 20.11/6.59 0 => 0 20.11/6.59 const => 0 20.11/6.59 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (10) 20.11/6.59 Obligation: 20.11/6.59 Complexity RNTS consisting of the following rules: 20.11/6.59 20.11/6.59 activate(z) -{ 1 }-> X :|: X >= 0, z = X 20.11/6.59 activate(z) -{ 1 }-> from(X) :|: z = 1 + X, X >= 0 20.11/6.59 from(z) -{ 1 }-> 1 + X :|: X >= 0, z = X 20.11/6.59 from(z) -{ 1 }-> 1 + X + (1 + (1 + X)) :|: X >= 0, z = X 20.11/6.59 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 20.11/6.59 sel(z, z') -{ 2 }-> sel(X, Z) :|: Z >= 0, z = 1 + X, Y >= 0, X >= 0, z' = 1 + Y + Z 20.11/6.59 sel(z, z') -{ 2 }-> sel(X, from(X')) :|: z = 1 + X, Y >= 0, z' = 1 + Y + (1 + X'), X >= 0, X' >= 0 20.11/6.59 20.11/6.59 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (11) InliningProof (UPPER BOUND(ID)) 20.11/6.59 Inlined the following terminating rules on right-hand sides where appropriate: 20.11/6.59 20.11/6.59 from(z) -{ 1 }-> 1 + X :|: X >= 0, z = X 20.11/6.59 from(z) -{ 1 }-> 1 + X + (1 + (1 + X)) :|: X >= 0, z = X 20.11/6.59 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (12) 20.11/6.59 Obligation: 20.11/6.59 Complexity RNTS consisting of the following rules: 20.11/6.59 20.11/6.59 activate(z) -{ 1 }-> X :|: X >= 0, z = X 20.11/6.59 activate(z) -{ 2 }-> 1 + X' :|: z = 1 + X, X >= 0, X' >= 0, X = X' 20.11/6.59 activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z = 1 + X, X >= 0, X' >= 0, X = X' 20.11/6.59 from(z) -{ 1 }-> 1 + X :|: X >= 0, z = X 20.11/6.59 from(z) -{ 1 }-> 1 + X + (1 + (1 + X)) :|: X >= 0, z = X 20.11/6.59 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 20.11/6.59 sel(z, z') -{ 2 }-> sel(X, Z) :|: Z >= 0, z = 1 + X, Y >= 0, X >= 0, z' = 1 + Y + Z 20.11/6.59 sel(z, z') -{ 3 }-> sel(X, 1 + X'') :|: z = 1 + X, Y >= 0, z' = 1 + Y + (1 + X'), X >= 0, X' >= 0, X'' >= 0, X' = X'' 20.11/6.59 sel(z, z') -{ 3 }-> sel(X, 1 + X'' + (1 + (1 + X''))) :|: z = 1 + X, Y >= 0, z' = 1 + Y + (1 + X'), X >= 0, X' >= 0, X'' >= 0, X' = X'' 20.11/6.59 20.11/6.59 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (13) SimplificationProof (BOTH BOUNDS(ID, ID)) 20.11/6.59 Simplified the RNTS by moving equalities from the constraints into the right-hand sides. 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (14) 20.11/6.59 Obligation: 20.11/6.59 Complexity RNTS consisting of the following rules: 20.11/6.59 20.11/6.59 activate(z) -{ 1 }-> z :|: z >= 0 20.11/6.59 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' 20.11/6.59 activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' 20.11/6.59 from(z) -{ 1 }-> 1 + z :|: z >= 0 20.11/6.59 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 20.11/6.59 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 20.11/6.59 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z 20.11/6.59 sel(z, z') -{ 3 }-> sel(z - 1, 1 + X'') :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' 20.11/6.59 sel(z, z') -{ 3 }-> sel(z - 1, 1 + X'' + (1 + (1 + X''))) :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' 20.11/6.59 20.11/6.59 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (15) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) 20.11/6.59 Found the following analysis order by SCC decomposition: 20.11/6.59 20.11/6.59 { activate } 20.11/6.59 { sel } 20.11/6.59 { from } 20.11/6.59 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (16) 20.11/6.59 Obligation: 20.11/6.59 Complexity RNTS consisting of the following rules: 20.11/6.59 20.11/6.59 activate(z) -{ 1 }-> z :|: z >= 0 20.11/6.59 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' 20.11/6.59 activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' 20.11/6.59 from(z) -{ 1 }-> 1 + z :|: z >= 0 20.11/6.59 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 20.11/6.59 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 20.11/6.59 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z 20.11/6.59 sel(z, z') -{ 3 }-> sel(z - 1, 1 + X'') :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' 20.11/6.59 sel(z, z') -{ 3 }-> sel(z - 1, 1 + X'' + (1 + (1 + X''))) :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' 20.11/6.59 20.11/6.59 Function symbols to be analyzed: {activate}, {sel}, {from} 20.11/6.59 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (17) ResultPropagationProof (UPPER BOUND(ID)) 20.11/6.59 Applied inner abstraction using the recently inferred runtime/size bounds where possible. 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (18) 20.11/6.59 Obligation: 20.11/6.59 Complexity RNTS consisting of the following rules: 20.11/6.59 20.11/6.59 activate(z) -{ 1 }-> z :|: z >= 0 20.11/6.59 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' 20.11/6.59 activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' 20.11/6.59 from(z) -{ 1 }-> 1 + z :|: z >= 0 20.11/6.59 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 20.11/6.59 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 20.11/6.59 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z 20.11/6.59 sel(z, z') -{ 3 }-> sel(z - 1, 1 + X'') :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' 20.11/6.59 sel(z, z') -{ 3 }-> sel(z - 1, 1 + X'' + (1 + (1 + X''))) :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' 20.11/6.59 20.11/6.59 Function symbols to be analyzed: {activate}, {sel}, {from} 20.11/6.59 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (19) IntTrsBoundProof (UPPER BOUND(ID)) 20.11/6.59 20.11/6.59 Computed SIZE bound using KoAT for: activate 20.11/6.59 after applying outer abstraction to obtain an ITS, 20.11/6.59 resulting in: O(n^1) with polynomial bound: 1 + 2*z 20.11/6.59 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (20) 20.11/6.59 Obligation: 20.11/6.59 Complexity RNTS consisting of the following rules: 20.11/6.59 20.11/6.59 activate(z) -{ 1 }-> z :|: z >= 0 20.11/6.59 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' 20.11/6.59 activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' 20.11/6.59 from(z) -{ 1 }-> 1 + z :|: z >= 0 20.11/6.59 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 20.11/6.59 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 20.11/6.59 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z 20.11/6.59 sel(z, z') -{ 3 }-> sel(z - 1, 1 + X'') :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' 20.11/6.59 sel(z, z') -{ 3 }-> sel(z - 1, 1 + X'' + (1 + (1 + X''))) :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' 20.11/6.59 20.11/6.59 Function symbols to be analyzed: {activate}, {sel}, {from} 20.11/6.59 Previous analysis results are: 20.11/6.59 activate: runtime: ?, size: O(n^1) [1 + 2*z] 20.11/6.59 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (21) IntTrsBoundProof (UPPER BOUND(ID)) 20.11/6.59 20.11/6.59 Computed RUNTIME bound using KoAT for: activate 20.11/6.59 after applying outer abstraction to obtain an ITS, 20.11/6.59 resulting in: O(1) with polynomial bound: 3 20.11/6.59 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (22) 20.11/6.59 Obligation: 20.11/6.59 Complexity RNTS consisting of the following rules: 20.11/6.59 20.11/6.59 activate(z) -{ 1 }-> z :|: z >= 0 20.11/6.59 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' 20.11/6.59 activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' 20.11/6.59 from(z) -{ 1 }-> 1 + z :|: z >= 0 20.11/6.59 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 20.11/6.59 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 20.11/6.59 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z 20.11/6.59 sel(z, z') -{ 3 }-> sel(z - 1, 1 + X'') :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' 20.11/6.59 sel(z, z') -{ 3 }-> sel(z - 1, 1 + X'' + (1 + (1 + X''))) :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' 20.11/6.59 20.11/6.59 Function symbols to be analyzed: {sel}, {from} 20.11/6.59 Previous analysis results are: 20.11/6.59 activate: runtime: O(1) [3], size: O(n^1) [1 + 2*z] 20.11/6.59 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (23) ResultPropagationProof (UPPER BOUND(ID)) 20.11/6.59 Applied inner abstraction using the recently inferred runtime/size bounds where possible. 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (24) 20.11/6.59 Obligation: 20.11/6.59 Complexity RNTS consisting of the following rules: 20.11/6.59 20.11/6.59 activate(z) -{ 1 }-> z :|: z >= 0 20.11/6.59 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' 20.11/6.59 activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' 20.11/6.59 from(z) -{ 1 }-> 1 + z :|: z >= 0 20.11/6.59 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 20.11/6.59 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 20.11/6.59 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z 20.11/6.59 sel(z, z') -{ 3 }-> sel(z - 1, 1 + X'') :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' 20.11/6.59 sel(z, z') -{ 3 }-> sel(z - 1, 1 + X'' + (1 + (1 + X''))) :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' 20.11/6.59 20.11/6.59 Function symbols to be analyzed: {sel}, {from} 20.11/6.59 Previous analysis results are: 20.11/6.59 activate: runtime: O(1) [3], size: O(n^1) [1 + 2*z] 20.11/6.59 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (25) IntTrsBoundProof (UPPER BOUND(ID)) 20.11/6.59 20.11/6.59 Computed SIZE bound using KoAT for: sel 20.11/6.59 after applying outer abstraction to obtain an ITS, 20.11/6.59 resulting in: EXP with polynomial bound: ? 20.11/6.59 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (26) 20.11/6.59 Obligation: 20.11/6.59 Complexity RNTS consisting of the following rules: 20.11/6.59 20.11/6.59 activate(z) -{ 1 }-> z :|: z >= 0 20.11/6.59 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' 20.11/6.59 activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' 20.11/6.59 from(z) -{ 1 }-> 1 + z :|: z >= 0 20.11/6.59 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 20.11/6.59 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 20.11/6.59 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z 20.11/6.59 sel(z, z') -{ 3 }-> sel(z - 1, 1 + X'') :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' 20.11/6.59 sel(z, z') -{ 3 }-> sel(z - 1, 1 + X'' + (1 + (1 + X''))) :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' 20.11/6.59 20.11/6.59 Function symbols to be analyzed: {sel}, {from} 20.11/6.59 Previous analysis results are: 20.11/6.59 activate: runtime: O(1) [3], size: O(n^1) [1 + 2*z] 20.11/6.59 sel: runtime: ?, size: EXP 20.11/6.59 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (27) IntTrsBoundProof (UPPER BOUND(ID)) 20.11/6.59 20.11/6.59 Computed RUNTIME bound using KoAT for: sel 20.11/6.59 after applying outer abstraction to obtain an ITS, 20.11/6.59 resulting in: O(n^1) with polynomial bound: 1 + 8*z 20.11/6.59 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (28) 20.11/6.59 Obligation: 20.11/6.59 Complexity RNTS consisting of the following rules: 20.11/6.59 20.11/6.59 activate(z) -{ 1 }-> z :|: z >= 0 20.11/6.59 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' 20.11/6.59 activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' 20.11/6.59 from(z) -{ 1 }-> 1 + z :|: z >= 0 20.11/6.59 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 20.11/6.59 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 20.11/6.59 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z 20.11/6.59 sel(z, z') -{ 3 }-> sel(z - 1, 1 + X'') :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' 20.11/6.59 sel(z, z') -{ 3 }-> sel(z - 1, 1 + X'' + (1 + (1 + X''))) :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' 20.11/6.59 20.11/6.59 Function symbols to be analyzed: {from} 20.11/6.59 Previous analysis results are: 20.11/6.59 activate: runtime: O(1) [3], size: O(n^1) [1 + 2*z] 20.11/6.59 sel: runtime: O(n^1) [1 + 8*z], size: EXP 20.11/6.59 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (29) ResultPropagationProof (UPPER BOUND(ID)) 20.11/6.59 Applied inner abstraction using the recently inferred runtime/size bounds where possible. 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (30) 20.11/6.59 Obligation: 20.11/6.59 Complexity RNTS consisting of the following rules: 20.11/6.59 20.11/6.59 activate(z) -{ 1 }-> z :|: z >= 0 20.11/6.59 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' 20.11/6.59 activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' 20.11/6.59 from(z) -{ 1 }-> 1 + z :|: z >= 0 20.11/6.59 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 20.11/6.59 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 20.11/6.59 sel(z, z') -{ -5 + 8*z }-> s :|: s >= 0, s <= inf, Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z 20.11/6.59 sel(z, z') -{ -4 + 8*z }-> s' :|: s' >= 0, s' <= inf', Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' 20.11/6.59 sel(z, z') -{ -4 + 8*z }-> s'' :|: s'' >= 0, s'' <= inf'', Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' 20.11/6.59 20.11/6.59 Function symbols to be analyzed: {from} 20.11/6.59 Previous analysis results are: 20.11/6.59 activate: runtime: O(1) [3], size: O(n^1) [1 + 2*z] 20.11/6.59 sel: runtime: O(n^1) [1 + 8*z], size: EXP 20.11/6.59 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (31) IntTrsBoundProof (UPPER BOUND(ID)) 20.11/6.59 20.11/6.59 Computed SIZE bound using CoFloCo for: from 20.11/6.59 after applying outer abstraction to obtain an ITS, 20.11/6.59 resulting in: O(n^1) with polynomial bound: 3 + 2*z 20.11/6.59 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (32) 20.11/6.59 Obligation: 20.11/6.59 Complexity RNTS consisting of the following rules: 20.11/6.59 20.11/6.59 activate(z) -{ 1 }-> z :|: z >= 0 20.11/6.59 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' 20.11/6.59 activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' 20.11/6.59 from(z) -{ 1 }-> 1 + z :|: z >= 0 20.11/6.59 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 20.11/6.59 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 20.11/6.59 sel(z, z') -{ -5 + 8*z }-> s :|: s >= 0, s <= inf, Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z 20.11/6.59 sel(z, z') -{ -4 + 8*z }-> s' :|: s' >= 0, s' <= inf', Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' 20.11/6.59 sel(z, z') -{ -4 + 8*z }-> s'' :|: s'' >= 0, s'' <= inf'', Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' 20.11/6.59 20.11/6.59 Function symbols to be analyzed: {from} 20.11/6.59 Previous analysis results are: 20.11/6.59 activate: runtime: O(1) [3], size: O(n^1) [1 + 2*z] 20.11/6.59 sel: runtime: O(n^1) [1 + 8*z], size: EXP 20.11/6.59 from: runtime: ?, size: O(n^1) [3 + 2*z] 20.11/6.59 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (33) IntTrsBoundProof (UPPER BOUND(ID)) 20.11/6.59 20.11/6.59 Computed RUNTIME bound using CoFloCo for: from 20.11/6.59 after applying outer abstraction to obtain an ITS, 20.11/6.59 resulting in: O(1) with polynomial bound: 1 20.11/6.59 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (34) 20.11/6.59 Obligation: 20.11/6.59 Complexity RNTS consisting of the following rules: 20.11/6.59 20.11/6.59 activate(z) -{ 1 }-> z :|: z >= 0 20.11/6.59 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' 20.11/6.59 activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' 20.11/6.59 from(z) -{ 1 }-> 1 + z :|: z >= 0 20.11/6.59 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 20.11/6.59 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 20.11/6.59 sel(z, z') -{ -5 + 8*z }-> s :|: s >= 0, s <= inf, Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z 20.11/6.59 sel(z, z') -{ -4 + 8*z }-> s' :|: s' >= 0, s' <= inf', Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' 20.11/6.59 sel(z, z') -{ -4 + 8*z }-> s'' :|: s'' >= 0, s'' <= inf'', Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' 20.11/6.59 20.11/6.59 Function symbols to be analyzed: 20.11/6.59 Previous analysis results are: 20.11/6.59 activate: runtime: O(1) [3], size: O(n^1) [1 + 2*z] 20.11/6.59 sel: runtime: O(n^1) [1 + 8*z], size: EXP 20.11/6.59 from: runtime: O(1) [1], size: O(n^1) [3 + 2*z] 20.11/6.59 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (35) FinalProof (FINISHED) 20.11/6.59 Computed overall runtime complexity 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (36) 20.11/6.59 BOUNDS(1, n^1) 20.11/6.59 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (37) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 20.11/6.59 Transformed a relative TRS into a decreasing-loop problem. 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (38) 20.11/6.59 Obligation: 20.11/6.59 Analyzing the following TRS for decreasing loops: 20.11/6.59 20.11/6.59 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 20.11/6.59 20.11/6.59 20.11/6.59 The TRS R consists of the following rules: 20.11/6.59 20.11/6.59 from(X) -> cons(X, n__from(s(X))) 20.11/6.59 sel(0, cons(X, Y)) -> X 20.11/6.59 sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) 20.11/6.59 from(X) -> n__from(X) 20.11/6.59 activate(n__from(X)) -> from(X) 20.11/6.59 activate(X) -> X 20.11/6.59 20.11/6.59 S is empty. 20.11/6.59 Rewrite Strategy: INNERMOST 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (39) DecreasingLoopProof (LOWER BOUND(ID)) 20.11/6.59 The following loop(s) give(s) rise to the lower bound Omega(n^1): 20.11/6.59 20.11/6.59 The rewrite sequence 20.11/6.59 20.11/6.59 sel(s(X), cons(Y, Z)) ->^+ sel(X, Z) 20.11/6.59 20.11/6.59 gives rise to a decreasing loop by considering the right hand sides subterm at position []. 20.11/6.59 20.11/6.59 The pumping substitution is [X / s(X), Z / cons(Y, Z)]. 20.11/6.59 20.11/6.59 The result substitution is [ ]. 20.11/6.59 20.11/6.59 20.11/6.59 20.11/6.59 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (40) 20.11/6.59 Complex Obligation (BEST) 20.11/6.59 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (41) 20.11/6.59 Obligation: 20.11/6.59 Proved the lower bound n^1 for the following obligation: 20.11/6.59 20.11/6.59 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 20.11/6.59 20.11/6.59 20.11/6.59 The TRS R consists of the following rules: 20.11/6.59 20.11/6.59 from(X) -> cons(X, n__from(s(X))) 20.11/6.59 sel(0, cons(X, Y)) -> X 20.11/6.59 sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) 20.11/6.59 from(X) -> n__from(X) 20.11/6.59 activate(n__from(X)) -> from(X) 20.11/6.59 activate(X) -> X 20.11/6.59 20.11/6.59 S is empty. 20.11/6.59 Rewrite Strategy: INNERMOST 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (42) LowerBoundPropagationProof (FINISHED) 20.11/6.59 Propagated lower bound. 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (43) 20.11/6.59 BOUNDS(n^1, INF) 20.11/6.59 20.11/6.59 ---------------------------------------- 20.11/6.59 20.11/6.59 (44) 20.11/6.59 Obligation: 20.11/6.59 Analyzing the following TRS for decreasing loops: 20.11/6.59 20.11/6.59 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 20.11/6.59 20.11/6.59 20.11/6.59 The TRS R consists of the following rules: 20.11/6.59 20.11/6.59 from(X) -> cons(X, n__from(s(X))) 20.11/6.59 sel(0, cons(X, Y)) -> X 20.11/6.59 sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) 20.11/6.59 from(X) -> n__from(X) 20.11/6.59 activate(n__from(X)) -> from(X) 20.11/6.59 activate(X) -> X 20.11/6.59 20.11/6.59 S is empty. 20.11/6.59 Rewrite Strategy: INNERMOST 20.35/9.53 EOF