5.30/2.13 WORST_CASE(NON_POLY, ?) 5.41/2.14 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 5.41/2.14 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 5.41/2.14 5.41/2.14 5.41/2.14 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 5.41/2.14 5.41/2.14 (0) CpxTRS 5.41/2.14 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 5.41/2.14 (2) TRS for Loop Detection 5.41/2.14 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 5.41/2.14 (4) BEST 5.41/2.14 (5) proven lower bound 5.41/2.14 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 5.41/2.14 (7) BOUNDS(n^1, INF) 5.41/2.14 (8) TRS for Loop Detection 5.41/2.14 (9) DecreasingLoopProof [FINISHED, 309 ms] 5.41/2.14 (10) BOUNDS(EXP, INF) 5.41/2.14 5.41/2.14 5.41/2.14 ---------------------------------------- 5.41/2.14 5.41/2.14 (0) 5.41/2.14 Obligation: 5.41/2.14 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 5.41/2.14 5.41/2.14 5.41/2.14 The TRS R consists of the following rules: 5.41/2.14 5.41/2.14 a__U11(tt, N) -> mark(N) 5.41/2.14 a__U21(tt, M, N) -> s(a__plus(mark(N), mark(M))) 5.41/2.14 a__U31(tt) -> 0 5.41/2.14 a__U41(tt, M, N) -> a__plus(a__x(mark(N), mark(M)), mark(N)) 5.41/2.14 a__and(tt, X) -> mark(X) 5.41/2.14 a__isNat(0) -> tt 5.41/2.14 a__isNat(plus(V1, V2)) -> a__and(a__isNat(V1), isNat(V2)) 5.41/2.14 a__isNat(s(V1)) -> a__isNat(V1) 5.41/2.14 a__isNat(x(V1, V2)) -> a__and(a__isNat(V1), isNat(V2)) 5.41/2.14 a__plus(N, 0) -> a__U11(a__isNat(N), N) 5.41/2.14 a__plus(N, s(M)) -> a__U21(a__and(a__isNat(M), isNat(N)), M, N) 5.41/2.14 a__x(N, 0) -> a__U31(a__isNat(N)) 5.41/2.14 a__x(N, s(M)) -> a__U41(a__and(a__isNat(M), isNat(N)), M, N) 5.41/2.14 mark(U11(X1, X2)) -> a__U11(mark(X1), X2) 5.41/2.14 mark(U21(X1, X2, X3)) -> a__U21(mark(X1), X2, X3) 5.41/2.14 mark(plus(X1, X2)) -> a__plus(mark(X1), mark(X2)) 5.41/2.14 mark(U31(X)) -> a__U31(mark(X)) 5.41/2.14 mark(U41(X1, X2, X3)) -> a__U41(mark(X1), X2, X3) 5.41/2.14 mark(x(X1, X2)) -> a__x(mark(X1), mark(X2)) 5.41/2.14 mark(and(X1, X2)) -> a__and(mark(X1), X2) 5.41/2.14 mark(isNat(X)) -> a__isNat(X) 5.41/2.14 mark(tt) -> tt 5.41/2.14 mark(s(X)) -> s(mark(X)) 5.41/2.14 mark(0) -> 0 5.41/2.14 a__U11(X1, X2) -> U11(X1, X2) 5.41/2.14 a__U21(X1, X2, X3) -> U21(X1, X2, X3) 5.41/2.14 a__plus(X1, X2) -> plus(X1, X2) 5.41/2.14 a__U31(X) -> U31(X) 5.41/2.14 a__U41(X1, X2, X3) -> U41(X1, X2, X3) 5.41/2.14 a__x(X1, X2) -> x(X1, X2) 5.41/2.14 a__and(X1, X2) -> and(X1, X2) 5.41/2.14 a__isNat(X) -> isNat(X) 5.41/2.14 5.41/2.14 S is empty. 5.41/2.14 Rewrite Strategy: INNERMOST 5.41/2.14 ---------------------------------------- 5.41/2.14 5.41/2.14 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 5.41/2.14 Transformed a relative TRS into a decreasing-loop problem. 5.41/2.14 ---------------------------------------- 5.41/2.14 5.41/2.14 (2) 5.41/2.14 Obligation: 5.41/2.14 Analyzing the following TRS for decreasing loops: 5.41/2.14 5.41/2.14 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 5.41/2.14 5.41/2.14 5.41/2.14 The TRS R consists of the following rules: 5.41/2.14 5.41/2.14 a__U11(tt, N) -> mark(N) 5.41/2.14 a__U21(tt, M, N) -> s(a__plus(mark(N), mark(M))) 5.41/2.14 a__U31(tt) -> 0 5.41/2.14 a__U41(tt, M, N) -> a__plus(a__x(mark(N), mark(M)), mark(N)) 5.41/2.14 a__and(tt, X) -> mark(X) 5.41/2.14 a__isNat(0) -> tt 5.41/2.14 a__isNat(plus(V1, V2)) -> a__and(a__isNat(V1), isNat(V2)) 5.41/2.14 a__isNat(s(V1)) -> a__isNat(V1) 5.41/2.14 a__isNat(x(V1, V2)) -> a__and(a__isNat(V1), isNat(V2)) 5.41/2.14 a__plus(N, 0) -> a__U11(a__isNat(N), N) 5.41/2.14 a__plus(N, s(M)) -> a__U21(a__and(a__isNat(M), isNat(N)), M, N) 5.41/2.14 a__x(N, 0) -> a__U31(a__isNat(N)) 5.41/2.14 a__x(N, s(M)) -> a__U41(a__and(a__isNat(M), isNat(N)), M, N) 5.41/2.14 mark(U11(X1, X2)) -> a__U11(mark(X1), X2) 5.41/2.14 mark(U21(X1, X2, X3)) -> a__U21(mark(X1), X2, X3) 5.41/2.14 mark(plus(X1, X2)) -> a__plus(mark(X1), mark(X2)) 5.41/2.14 mark(U31(X)) -> a__U31(mark(X)) 5.41/2.14 mark(U41(X1, X2, X3)) -> a__U41(mark(X1), X2, X3) 5.41/2.14 mark(x(X1, X2)) -> a__x(mark(X1), mark(X2)) 5.41/2.14 mark(and(X1, X2)) -> a__and(mark(X1), X2) 5.41/2.14 mark(isNat(X)) -> a__isNat(X) 5.41/2.14 mark(tt) -> tt 5.41/2.14 mark(s(X)) -> s(mark(X)) 5.41/2.14 mark(0) -> 0 5.41/2.14 a__U11(X1, X2) -> U11(X1, X2) 5.41/2.14 a__U21(X1, X2, X3) -> U21(X1, X2, X3) 5.41/2.14 a__plus(X1, X2) -> plus(X1, X2) 5.41/2.14 a__U31(X) -> U31(X) 5.41/2.14 a__U41(X1, X2, X3) -> U41(X1, X2, X3) 5.41/2.14 a__x(X1, X2) -> x(X1, X2) 5.41/2.14 a__and(X1, X2) -> and(X1, X2) 5.41/2.14 a__isNat(X) -> isNat(X) 5.41/2.14 5.41/2.14 S is empty. 5.41/2.14 Rewrite Strategy: INNERMOST 5.41/2.14 ---------------------------------------- 5.41/2.14 5.41/2.14 (3) DecreasingLoopProof (LOWER BOUND(ID)) 5.41/2.14 The following loop(s) give(s) rise to the lower bound Omega(n^1): 5.41/2.14 5.41/2.14 The rewrite sequence 5.41/2.14 5.41/2.14 mark(U41(X1, X2, X3)) ->^+ a__U41(mark(X1), X2, X3) 5.41/2.14 5.41/2.14 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 5.41/2.14 5.41/2.14 The pumping substitution is [X1 / U41(X1, X2, X3)]. 5.41/2.14 5.41/2.14 The result substitution is [ ]. 5.41/2.14 5.41/2.14 5.41/2.14 5.41/2.14 5.41/2.14 ---------------------------------------- 5.41/2.14 5.41/2.14 (4) 5.41/2.14 Complex Obligation (BEST) 5.41/2.14 5.41/2.14 ---------------------------------------- 5.41/2.14 5.41/2.14 (5) 5.41/2.14 Obligation: 5.41/2.14 Proved the lower bound n^1 for the following obligation: 5.41/2.14 5.41/2.14 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 5.41/2.14 5.41/2.14 5.41/2.14 The TRS R consists of the following rules: 5.41/2.14 5.41/2.14 a__U11(tt, N) -> mark(N) 5.41/2.14 a__U21(tt, M, N) -> s(a__plus(mark(N), mark(M))) 5.41/2.14 a__U31(tt) -> 0 5.41/2.14 a__U41(tt, M, N) -> a__plus(a__x(mark(N), mark(M)), mark(N)) 5.41/2.14 a__and(tt, X) -> mark(X) 5.41/2.14 a__isNat(0) -> tt 5.41/2.14 a__isNat(plus(V1, V2)) -> a__and(a__isNat(V1), isNat(V2)) 5.41/2.14 a__isNat(s(V1)) -> a__isNat(V1) 5.41/2.14 a__isNat(x(V1, V2)) -> a__and(a__isNat(V1), isNat(V2)) 5.41/2.14 a__plus(N, 0) -> a__U11(a__isNat(N), N) 5.41/2.14 a__plus(N, s(M)) -> a__U21(a__and(a__isNat(M), isNat(N)), M, N) 5.41/2.14 a__x(N, 0) -> a__U31(a__isNat(N)) 5.41/2.14 a__x(N, s(M)) -> a__U41(a__and(a__isNat(M), isNat(N)), M, N) 5.41/2.14 mark(U11(X1, X2)) -> a__U11(mark(X1), X2) 5.41/2.14 mark(U21(X1, X2, X3)) -> a__U21(mark(X1), X2, X3) 5.41/2.14 mark(plus(X1, X2)) -> a__plus(mark(X1), mark(X2)) 5.41/2.14 mark(U31(X)) -> a__U31(mark(X)) 5.41/2.14 mark(U41(X1, X2, X3)) -> a__U41(mark(X1), X2, X3) 5.41/2.14 mark(x(X1, X2)) -> a__x(mark(X1), mark(X2)) 5.41/2.14 mark(and(X1, X2)) -> a__and(mark(X1), X2) 5.41/2.14 mark(isNat(X)) -> a__isNat(X) 5.41/2.14 mark(tt) -> tt 5.41/2.14 mark(s(X)) -> s(mark(X)) 5.41/2.14 mark(0) -> 0 5.41/2.14 a__U11(X1, X2) -> U11(X1, X2) 5.41/2.14 a__U21(X1, X2, X3) -> U21(X1, X2, X3) 5.41/2.14 a__plus(X1, X2) -> plus(X1, X2) 5.41/2.14 a__U31(X) -> U31(X) 5.41/2.14 a__U41(X1, X2, X3) -> U41(X1, X2, X3) 5.41/2.14 a__x(X1, X2) -> x(X1, X2) 5.41/2.14 a__and(X1, X2) -> and(X1, X2) 5.41/2.14 a__isNat(X) -> isNat(X) 5.41/2.14 5.41/2.14 S is empty. 5.41/2.14 Rewrite Strategy: INNERMOST 5.41/2.14 ---------------------------------------- 5.41/2.14 5.41/2.14 (6) LowerBoundPropagationProof (FINISHED) 5.41/2.14 Propagated lower bound. 5.41/2.14 ---------------------------------------- 5.41/2.14 5.41/2.14 (7) 5.41/2.14 BOUNDS(n^1, INF) 5.41/2.14 5.41/2.14 ---------------------------------------- 5.41/2.14 5.41/2.14 (8) 5.41/2.14 Obligation: 5.41/2.14 Analyzing the following TRS for decreasing loops: 5.41/2.14 5.41/2.14 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 5.41/2.14 5.41/2.14 5.41/2.14 The TRS R consists of the following rules: 5.41/2.14 5.41/2.14 a__U11(tt, N) -> mark(N) 5.41/2.14 a__U21(tt, M, N) -> s(a__plus(mark(N), mark(M))) 5.41/2.14 a__U31(tt) -> 0 5.41/2.14 a__U41(tt, M, N) -> a__plus(a__x(mark(N), mark(M)), mark(N)) 5.41/2.14 a__and(tt, X) -> mark(X) 5.41/2.14 a__isNat(0) -> tt 5.41/2.14 a__isNat(plus(V1, V2)) -> a__and(a__isNat(V1), isNat(V2)) 5.41/2.14 a__isNat(s(V1)) -> a__isNat(V1) 5.41/2.14 a__isNat(x(V1, V2)) -> a__and(a__isNat(V1), isNat(V2)) 5.41/2.14 a__plus(N, 0) -> a__U11(a__isNat(N), N) 5.41/2.14 a__plus(N, s(M)) -> a__U21(a__and(a__isNat(M), isNat(N)), M, N) 5.41/2.14 a__x(N, 0) -> a__U31(a__isNat(N)) 5.41/2.14 a__x(N, s(M)) -> a__U41(a__and(a__isNat(M), isNat(N)), M, N) 5.41/2.14 mark(U11(X1, X2)) -> a__U11(mark(X1), X2) 5.41/2.14 mark(U21(X1, X2, X3)) -> a__U21(mark(X1), X2, X3) 5.41/2.14 mark(plus(X1, X2)) -> a__plus(mark(X1), mark(X2)) 5.41/2.14 mark(U31(X)) -> a__U31(mark(X)) 5.41/2.14 mark(U41(X1, X2, X3)) -> a__U41(mark(X1), X2, X3) 5.41/2.14 mark(x(X1, X2)) -> a__x(mark(X1), mark(X2)) 5.41/2.14 mark(and(X1, X2)) -> a__and(mark(X1), X2) 5.41/2.14 mark(isNat(X)) -> a__isNat(X) 5.41/2.14 mark(tt) -> tt 5.41/2.14 mark(s(X)) -> s(mark(X)) 5.41/2.14 mark(0) -> 0 5.41/2.14 a__U11(X1, X2) -> U11(X1, X2) 5.41/2.14 a__U21(X1, X2, X3) -> U21(X1, X2, X3) 5.41/2.14 a__plus(X1, X2) -> plus(X1, X2) 5.41/2.14 a__U31(X) -> U31(X) 5.41/2.14 a__U41(X1, X2, X3) -> U41(X1, X2, X3) 5.41/2.14 a__x(X1, X2) -> x(X1, X2) 5.41/2.14 a__and(X1, X2) -> and(X1, X2) 5.41/2.14 a__isNat(X) -> isNat(X) 5.41/2.14 5.41/2.14 S is empty. 5.41/2.14 Rewrite Strategy: INNERMOST 5.41/2.14 ---------------------------------------- 5.41/2.14 5.41/2.14 (9) DecreasingLoopProof (FINISHED) 5.41/2.14 The following loop(s) give(s) rise to the lower bound EXP: 5.41/2.14 5.41/2.14 The rewrite sequence 5.41/2.14 5.41/2.14 mark(U41(tt, X2, X3)) ->^+ a__plus(a__x(mark(X3), mark(X2)), mark(X3)) 5.41/2.14 5.41/2.14 gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0]. 5.41/2.14 5.41/2.14 The pumping substitution is [X3 / U41(tt, X2, X3)]. 5.41/2.14 5.41/2.14 The result substitution is [ ]. 5.41/2.14 5.41/2.14 5.41/2.14 5.41/2.14 The rewrite sequence 5.41/2.14 5.41/2.14 mark(U41(tt, X2, X3)) ->^+ a__plus(a__x(mark(X3), mark(X2)), mark(X3)) 5.41/2.14 5.41/2.14 gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. 5.41/2.14 5.41/2.14 The pumping substitution is [X3 / U41(tt, X2, X3)]. 5.41/2.14 5.41/2.14 The result substitution is [ ]. 5.41/2.14 5.41/2.14 5.41/2.14 5.41/2.14 5.41/2.14 ---------------------------------------- 5.41/2.14 5.41/2.14 (10) 5.41/2.14 BOUNDS(EXP, INF) 5.41/2.17 EOF