1122.71/292.35 WORST_CASE(Omega(n^1), ?) 1133.40/295.05 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 1133.40/295.05 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 1133.40/295.05 1133.40/295.05 1133.40/295.05 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 1133.40/295.05 1133.40/295.05 (0) CpxTRS 1133.40/295.05 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 1133.40/295.05 (2) TRS for Loop Detection 1133.40/295.05 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 1133.40/295.05 (4) BEST 1133.40/295.05 (5) proven lower bound 1133.40/295.05 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 1133.40/295.05 (7) BOUNDS(n^1, INF) 1133.40/295.05 (8) TRS for Loop Detection 1133.40/295.05 1133.40/295.05 1133.40/295.05 ---------------------------------------- 1133.40/295.05 1133.40/295.05 (0) 1133.40/295.05 Obligation: 1133.40/295.05 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 1133.40/295.05 1133.40/295.05 1133.40/295.05 The TRS R consists of the following rules: 1133.40/295.05 1133.40/295.05 a__U11(tt, V2) -> a__U12(a__isNat(V2)) 1133.40/295.05 a__U12(tt) -> tt 1133.40/295.05 a__U21(tt) -> tt 1133.40/295.05 a__U31(tt, N) -> mark(N) 1133.40/295.05 a__U41(tt, M, N) -> a__U42(a__isNat(N), M, N) 1133.40/295.05 a__U42(tt, M, N) -> s(a__plus(mark(N), mark(M))) 1133.40/295.05 a__isNat(0) -> tt 1133.40/295.05 a__isNat(plus(V1, V2)) -> a__U11(a__isNat(V1), V2) 1133.40/295.05 a__isNat(s(V1)) -> a__U21(a__isNat(V1)) 1133.40/295.05 a__plus(N, 0) -> a__U31(a__isNat(N), N) 1133.40/295.05 a__plus(N, s(M)) -> a__U41(a__isNat(M), M, N) 1133.40/295.05 mark(U11(X1, X2)) -> a__U11(mark(X1), X2) 1133.40/295.05 mark(U12(X)) -> a__U12(mark(X)) 1133.40/295.05 mark(isNat(X)) -> a__isNat(X) 1133.40/295.05 mark(U21(X)) -> a__U21(mark(X)) 1133.40/295.05 mark(U31(X1, X2)) -> a__U31(mark(X1), X2) 1133.40/295.05 mark(U41(X1, X2, X3)) -> a__U41(mark(X1), X2, X3) 1133.40/295.05 mark(U42(X1, X2, X3)) -> a__U42(mark(X1), X2, X3) 1133.40/295.05 mark(plus(X1, X2)) -> a__plus(mark(X1), mark(X2)) 1133.40/295.05 mark(tt) -> tt 1133.40/295.05 mark(s(X)) -> s(mark(X)) 1133.40/295.05 mark(0) -> 0 1133.40/295.05 a__U11(X1, X2) -> U11(X1, X2) 1133.40/295.05 a__U12(X) -> U12(X) 1133.40/295.05 a__isNat(X) -> isNat(X) 1133.40/295.05 a__U21(X) -> U21(X) 1133.40/295.05 a__U31(X1, X2) -> U31(X1, X2) 1133.40/295.05 a__U41(X1, X2, X3) -> U41(X1, X2, X3) 1133.40/295.05 a__U42(X1, X2, X3) -> U42(X1, X2, X3) 1133.40/295.05 a__plus(X1, X2) -> plus(X1, X2) 1133.40/295.05 1133.40/295.05 S is empty. 1133.40/295.05 Rewrite Strategy: INNERMOST 1133.40/295.05 ---------------------------------------- 1133.40/295.05 1133.40/295.05 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 1133.40/295.05 Transformed a relative TRS into a decreasing-loop problem. 1133.40/295.05 ---------------------------------------- 1133.40/295.05 1133.40/295.05 (2) 1133.40/295.05 Obligation: 1133.40/295.05 Analyzing the following TRS for decreasing loops: 1133.40/295.05 1133.40/295.05 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 1133.40/295.05 1133.40/295.05 1133.40/295.05 The TRS R consists of the following rules: 1133.40/295.05 1133.40/295.05 a__U11(tt, V2) -> a__U12(a__isNat(V2)) 1133.40/295.05 a__U12(tt) -> tt 1133.40/295.05 a__U21(tt) -> tt 1133.40/295.05 a__U31(tt, N) -> mark(N) 1133.40/295.05 a__U41(tt, M, N) -> a__U42(a__isNat(N), M, N) 1133.40/295.05 a__U42(tt, M, N) -> s(a__plus(mark(N), mark(M))) 1133.40/295.05 a__isNat(0) -> tt 1133.40/295.05 a__isNat(plus(V1, V2)) -> a__U11(a__isNat(V1), V2) 1133.40/295.05 a__isNat(s(V1)) -> a__U21(a__isNat(V1)) 1133.40/295.05 a__plus(N, 0) -> a__U31(a__isNat(N), N) 1133.40/295.05 a__plus(N, s(M)) -> a__U41(a__isNat(M), M, N) 1133.40/295.05 mark(U11(X1, X2)) -> a__U11(mark(X1), X2) 1133.40/295.05 mark(U12(X)) -> a__U12(mark(X)) 1133.40/295.05 mark(isNat(X)) -> a__isNat(X) 1133.40/295.05 mark(U21(X)) -> a__U21(mark(X)) 1133.40/295.05 mark(U31(X1, X2)) -> a__U31(mark(X1), X2) 1133.40/295.05 mark(U41(X1, X2, X3)) -> a__U41(mark(X1), X2, X3) 1133.40/295.05 mark(U42(X1, X2, X3)) -> a__U42(mark(X1), X2, X3) 1133.40/295.05 mark(plus(X1, X2)) -> a__plus(mark(X1), mark(X2)) 1133.40/295.05 mark(tt) -> tt 1133.40/295.05 mark(s(X)) -> s(mark(X)) 1133.40/295.05 mark(0) -> 0 1133.40/295.05 a__U11(X1, X2) -> U11(X1, X2) 1133.40/295.05 a__U12(X) -> U12(X) 1133.40/295.05 a__isNat(X) -> isNat(X) 1133.40/295.05 a__U21(X) -> U21(X) 1133.40/295.05 a__U31(X1, X2) -> U31(X1, X2) 1133.40/295.05 a__U41(X1, X2, X3) -> U41(X1, X2, X3) 1133.40/295.05 a__U42(X1, X2, X3) -> U42(X1, X2, X3) 1133.40/295.05 a__plus(X1, X2) -> plus(X1, X2) 1133.40/295.05 1133.40/295.05 S is empty. 1133.40/295.05 Rewrite Strategy: INNERMOST 1133.40/295.05 ---------------------------------------- 1133.40/295.05 1133.40/295.05 (3) DecreasingLoopProof (LOWER BOUND(ID)) 1133.40/295.05 The following loop(s) give(s) rise to the lower bound Omega(n^1): 1133.40/295.05 1133.40/295.05 The rewrite sequence 1133.40/295.05 1133.40/295.05 mark(U12(X)) ->^+ a__U12(mark(X)) 1133.40/295.05 1133.40/295.05 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 1133.40/295.05 1133.40/295.05 The pumping substitution is [X / U12(X)]. 1133.40/295.05 1133.40/295.05 The result substitution is [ ]. 1133.40/295.05 1133.40/295.05 1133.40/295.05 1133.40/295.05 1133.40/295.05 ---------------------------------------- 1133.40/295.05 1133.40/295.05 (4) 1133.40/295.05 Complex Obligation (BEST) 1133.40/295.05 1133.40/295.05 ---------------------------------------- 1133.40/295.05 1133.40/295.05 (5) 1133.40/295.05 Obligation: 1133.40/295.05 Proved the lower bound n^1 for the following obligation: 1133.40/295.05 1133.40/295.05 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 1133.40/295.05 1133.40/295.05 1133.40/295.05 The TRS R consists of the following rules: 1133.40/295.05 1133.40/295.05 a__U11(tt, V2) -> a__U12(a__isNat(V2)) 1133.40/295.05 a__U12(tt) -> tt 1133.40/295.05 a__U21(tt) -> tt 1133.40/295.05 a__U31(tt, N) -> mark(N) 1133.40/295.05 a__U41(tt, M, N) -> a__U42(a__isNat(N), M, N) 1133.40/295.05 a__U42(tt, M, N) -> s(a__plus(mark(N), mark(M))) 1133.40/295.05 a__isNat(0) -> tt 1133.40/295.05 a__isNat(plus(V1, V2)) -> a__U11(a__isNat(V1), V2) 1133.40/295.05 a__isNat(s(V1)) -> a__U21(a__isNat(V1)) 1133.40/295.05 a__plus(N, 0) -> a__U31(a__isNat(N), N) 1133.40/295.05 a__plus(N, s(M)) -> a__U41(a__isNat(M), M, N) 1133.40/295.05 mark(U11(X1, X2)) -> a__U11(mark(X1), X2) 1133.40/295.05 mark(U12(X)) -> a__U12(mark(X)) 1133.40/295.05 mark(isNat(X)) -> a__isNat(X) 1133.40/295.05 mark(U21(X)) -> a__U21(mark(X)) 1133.40/295.05 mark(U31(X1, X2)) -> a__U31(mark(X1), X2) 1133.40/295.05 mark(U41(X1, X2, X3)) -> a__U41(mark(X1), X2, X3) 1133.40/295.05 mark(U42(X1, X2, X3)) -> a__U42(mark(X1), X2, X3) 1133.40/295.05 mark(plus(X1, X2)) -> a__plus(mark(X1), mark(X2)) 1133.40/295.05 mark(tt) -> tt 1133.40/295.05 mark(s(X)) -> s(mark(X)) 1133.40/295.05 mark(0) -> 0 1133.40/295.05 a__U11(X1, X2) -> U11(X1, X2) 1133.40/295.05 a__U12(X) -> U12(X) 1133.40/295.05 a__isNat(X) -> isNat(X) 1133.40/295.05 a__U21(X) -> U21(X) 1133.40/295.05 a__U31(X1, X2) -> U31(X1, X2) 1133.40/295.05 a__U41(X1, X2, X3) -> U41(X1, X2, X3) 1133.40/295.05 a__U42(X1, X2, X3) -> U42(X1, X2, X3) 1133.40/295.05 a__plus(X1, X2) -> plus(X1, X2) 1133.40/295.05 1133.40/295.05 S is empty. 1133.40/295.05 Rewrite Strategy: INNERMOST 1133.40/295.05 ---------------------------------------- 1133.40/295.05 1133.40/295.05 (6) LowerBoundPropagationProof (FINISHED) 1133.40/295.05 Propagated lower bound. 1133.40/295.05 ---------------------------------------- 1133.40/295.05 1133.40/295.05 (7) 1133.40/295.05 BOUNDS(n^1, INF) 1133.40/295.05 1133.40/295.05 ---------------------------------------- 1133.40/295.05 1133.40/295.05 (8) 1133.40/295.05 Obligation: 1133.40/295.05 Analyzing the following TRS for decreasing loops: 1133.40/295.05 1133.40/295.05 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 1133.40/295.05 1133.40/295.05 1133.40/295.05 The TRS R consists of the following rules: 1133.40/295.05 1133.40/295.05 a__U11(tt, V2) -> a__U12(a__isNat(V2)) 1133.40/295.05 a__U12(tt) -> tt 1133.40/295.05 a__U21(tt) -> tt 1133.40/295.05 a__U31(tt, N) -> mark(N) 1133.40/295.05 a__U41(tt, M, N) -> a__U42(a__isNat(N), M, N) 1133.40/295.05 a__U42(tt, M, N) -> s(a__plus(mark(N), mark(M))) 1133.40/295.05 a__isNat(0) -> tt 1133.40/295.05 a__isNat(plus(V1, V2)) -> a__U11(a__isNat(V1), V2) 1133.40/295.05 a__isNat(s(V1)) -> a__U21(a__isNat(V1)) 1133.40/295.05 a__plus(N, 0) -> a__U31(a__isNat(N), N) 1133.40/295.05 a__plus(N, s(M)) -> a__U41(a__isNat(M), M, N) 1133.40/295.05 mark(U11(X1, X2)) -> a__U11(mark(X1), X2) 1133.40/295.05 mark(U12(X)) -> a__U12(mark(X)) 1133.40/295.05 mark(isNat(X)) -> a__isNat(X) 1133.40/295.05 mark(U21(X)) -> a__U21(mark(X)) 1133.40/295.05 mark(U31(X1, X2)) -> a__U31(mark(X1), X2) 1133.40/295.05 mark(U41(X1, X2, X3)) -> a__U41(mark(X1), X2, X3) 1133.40/295.05 mark(U42(X1, X2, X3)) -> a__U42(mark(X1), X2, X3) 1133.40/295.05 mark(plus(X1, X2)) -> a__plus(mark(X1), mark(X2)) 1133.40/295.05 mark(tt) -> tt 1133.40/295.05 mark(s(X)) -> s(mark(X)) 1133.40/295.05 mark(0) -> 0 1133.40/295.05 a__U11(X1, X2) -> U11(X1, X2) 1133.40/295.05 a__U12(X) -> U12(X) 1133.40/295.05 a__isNat(X) -> isNat(X) 1133.40/295.05 a__U21(X) -> U21(X) 1133.40/295.05 a__U31(X1, X2) -> U31(X1, X2) 1133.40/295.05 a__U41(X1, X2, X3) -> U41(X1, X2, X3) 1133.40/295.05 a__U42(X1, X2, X3) -> U42(X1, X2, X3) 1133.40/295.05 a__plus(X1, X2) -> plus(X1, X2) 1133.40/295.05 1133.40/295.05 S is empty. 1133.40/295.05 Rewrite Strategy: INNERMOST 1133.51/295.12 EOF