683.89/291.49 WORST_CASE(Omega(n^1), ?) 684.04/291.51 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 684.04/291.51 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 684.04/291.51 684.04/291.51 684.04/291.51 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, EXP). 684.04/291.51 684.04/291.51 (0) CpxTRS 684.04/291.51 (1) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] 684.04/291.51 (2) CpxWeightedTrs 684.04/291.51 (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 684.04/291.51 (4) CpxTypedWeightedTrs 684.04/291.51 (5) CompletionProof [UPPER BOUND(ID), 0 ms] 684.04/291.51 (6) CpxTypedWeightedCompleteTrs 684.04/291.51 (7) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] 684.04/291.51 (8) CpxTypedWeightedCompleteTrs 684.04/291.51 (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] 684.04/291.51 (10) CpxRNTS 684.04/291.51 (11) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] 684.04/291.51 (12) CpxRNTS 684.04/291.51 (13) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] 684.04/291.51 (14) CpxRNTS 684.04/291.51 (15) ResultPropagationProof [UPPER BOUND(ID), 0 ms] 684.04/291.51 (16) CpxRNTS 684.04/291.51 (17) IntTrsBoundProof [UPPER BOUND(ID), 282 ms] 684.04/291.51 (18) CpxRNTS 684.04/291.51 (19) IntTrsBoundProof [UPPER BOUND(ID), 96 ms] 684.04/291.51 (20) CpxRNTS 684.04/291.51 (21) ResultPropagationProof [UPPER BOUND(ID), 0 ms] 684.04/291.51 (22) CpxRNTS 684.04/291.51 (23) IntTrsBoundProof [UPPER BOUND(ID), 252 ms] 684.04/291.51 (24) CpxRNTS 684.04/291.51 (25) IntTrsBoundProof [UPPER BOUND(ID), 53 ms] 684.04/291.51 (26) CpxRNTS 684.04/291.51 (27) ResultPropagationProof [UPPER BOUND(ID), 0 ms] 684.04/291.51 (28) CpxRNTS 684.04/291.51 (29) IntTrsBoundProof [UPPER BOUND(ID), 188 ms] 684.04/291.51 (30) CpxRNTS 684.04/291.51 (31) IntTrsBoundProof [UPPER BOUND(ID), 62 ms] 684.04/291.51 (32) CpxRNTS 684.04/291.51 (33) ResultPropagationProof [UPPER BOUND(ID), 0 ms] 684.04/291.51 (34) CpxRNTS 684.04/291.51 (35) IntTrsBoundProof [UPPER BOUND(ID), 213 ms] 684.04/291.51 (36) CpxRNTS 684.04/291.51 (37) IntTrsBoundProof [UPPER BOUND(ID), 156 ms] 684.04/291.51 (38) CpxRNTS 684.04/291.51 (39) FinalProof [FINISHED, 0 ms] 684.04/291.51 (40) BOUNDS(1, EXP) 684.04/291.51 (41) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 684.04/291.51 (42) TRS for Loop Detection 684.04/291.51 (43) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 684.04/291.51 (44) BEST 684.04/291.51 (45) proven lower bound 684.04/291.51 (46) LowerBoundPropagationProof [FINISHED, 0 ms] 684.04/291.51 (47) BOUNDS(n^1, INF) 684.04/291.51 (48) TRS for Loop Detection 684.04/291.51 684.04/291.51 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (0) 684.04/291.51 Obligation: 684.04/291.51 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, EXP). 684.04/291.51 684.04/291.51 684.04/291.51 The TRS R consists of the following rules: 684.04/291.51 684.04/291.51 f(X) -> cons(X, n__f(g(X))) 684.04/291.51 g(0) -> s(0) 684.04/291.51 g(s(X)) -> s(s(g(X))) 684.04/291.51 sel(0, cons(X, Y)) -> X 684.04/291.51 sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) 684.04/291.51 f(X) -> n__f(X) 684.04/291.51 activate(n__f(X)) -> f(X) 684.04/291.51 activate(X) -> X 684.04/291.51 684.04/291.51 S is empty. 684.04/291.51 Rewrite Strategy: INNERMOST 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (1) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) 684.04/291.51 Transformed relative TRS to weighted TRS 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (2) 684.04/291.51 Obligation: 684.04/291.51 The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, EXP). 684.04/291.51 684.04/291.51 684.04/291.51 The TRS R consists of the following rules: 684.04/291.51 684.04/291.51 f(X) -> cons(X, n__f(g(X))) [1] 684.04/291.51 g(0) -> s(0) [1] 684.04/291.51 g(s(X)) -> s(s(g(X))) [1] 684.04/291.51 sel(0, cons(X, Y)) -> X [1] 684.04/291.51 sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) [1] 684.04/291.51 f(X) -> n__f(X) [1] 684.04/291.51 activate(n__f(X)) -> f(X) [1] 684.04/291.51 activate(X) -> X [1] 684.04/291.51 684.04/291.51 Rewrite Strategy: INNERMOST 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 684.04/291.51 Infered types. 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (4) 684.04/291.51 Obligation: 684.04/291.51 Runtime Complexity Weighted TRS with Types. 684.04/291.51 The TRS R consists of the following rules: 684.04/291.51 684.04/291.51 f(X) -> cons(X, n__f(g(X))) [1] 684.04/291.51 g(0) -> s(0) [1] 684.04/291.51 g(s(X)) -> s(s(g(X))) [1] 684.04/291.51 sel(0, cons(X, Y)) -> X [1] 684.04/291.51 sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) [1] 684.04/291.51 f(X) -> n__f(X) [1] 684.04/291.51 activate(n__f(X)) -> f(X) [1] 684.04/291.51 activate(X) -> X [1] 684.04/291.51 684.04/291.51 The TRS has the following type information: 684.04/291.51 f :: 0:s -> n__f:cons 684.04/291.51 cons :: 0:s -> n__f:cons -> n__f:cons 684.04/291.51 n__f :: 0:s -> n__f:cons 684.04/291.51 g :: 0:s -> 0:s 684.04/291.51 0 :: 0:s 684.04/291.51 s :: 0:s -> 0:s 684.04/291.51 sel :: 0:s -> n__f:cons -> 0:s 684.04/291.51 activate :: n__f:cons -> n__f:cons 684.04/291.51 684.04/291.51 Rewrite Strategy: INNERMOST 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (5) CompletionProof (UPPER BOUND(ID)) 684.04/291.51 The transformation into a RNTS is sound, since: 684.04/291.51 684.04/291.51 (a) The obligation is a constructor system where every type has a constant constructor, 684.04/291.51 684.04/291.51 (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: 684.04/291.51 684.04/291.51 sel_2 684.04/291.51 684.04/291.51 (c) The following functions are completely defined: 684.04/291.51 684.04/291.51 activate_1 684.04/291.51 f_1 684.04/291.51 g_1 684.04/291.51 684.04/291.51 Due to the following rules being added: 684.04/291.51 none 684.04/291.51 684.04/291.51 And the following fresh constants: const 684.04/291.51 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (6) 684.04/291.51 Obligation: 684.04/291.51 Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: 684.04/291.51 684.04/291.51 Runtime Complexity Weighted TRS with Types. 684.04/291.51 The TRS R consists of the following rules: 684.04/291.51 684.04/291.51 f(X) -> cons(X, n__f(g(X))) [1] 684.04/291.51 g(0) -> s(0) [1] 684.04/291.51 g(s(X)) -> s(s(g(X))) [1] 684.04/291.51 sel(0, cons(X, Y)) -> X [1] 684.04/291.51 sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) [1] 684.04/291.51 f(X) -> n__f(X) [1] 684.04/291.51 activate(n__f(X)) -> f(X) [1] 684.04/291.51 activate(X) -> X [1] 684.04/291.51 684.04/291.51 The TRS has the following type information: 684.04/291.51 f :: 0:s -> n__f:cons 684.04/291.51 cons :: 0:s -> n__f:cons -> n__f:cons 684.04/291.51 n__f :: 0:s -> n__f:cons 684.04/291.51 g :: 0:s -> 0:s 684.04/291.51 0 :: 0:s 684.04/291.51 s :: 0:s -> 0:s 684.04/291.51 sel :: 0:s -> n__f:cons -> 0:s 684.04/291.51 activate :: n__f:cons -> n__f:cons 684.04/291.51 const :: n__f:cons 684.04/291.51 684.04/291.51 Rewrite Strategy: INNERMOST 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (7) NarrowingProof (BOTH BOUNDS(ID, ID)) 684.04/291.51 Narrowed the inner basic terms of all right-hand sides by a single narrowing step. 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (8) 684.04/291.51 Obligation: 684.04/291.51 Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: 684.04/291.51 684.04/291.51 Runtime Complexity Weighted TRS with Types. 684.04/291.51 The TRS R consists of the following rules: 684.04/291.51 684.04/291.51 f(X) -> cons(X, n__f(g(X))) [1] 684.04/291.51 g(0) -> s(0) [1] 684.04/291.51 g(s(X)) -> s(s(g(X))) [1] 684.04/291.51 sel(0, cons(X, Y)) -> X [1] 684.04/291.51 sel(s(X), cons(Y, n__f(X'))) -> sel(X, f(X')) [2] 684.04/291.51 sel(s(X), cons(Y, Z)) -> sel(X, Z) [2] 684.04/291.51 f(X) -> n__f(X) [1] 684.04/291.51 activate(n__f(X)) -> f(X) [1] 684.04/291.51 activate(X) -> X [1] 684.04/291.51 684.04/291.51 The TRS has the following type information: 684.04/291.51 f :: 0:s -> n__f:cons 684.04/291.51 cons :: 0:s -> n__f:cons -> n__f:cons 684.04/291.51 n__f :: 0:s -> n__f:cons 684.04/291.51 g :: 0:s -> 0:s 684.04/291.51 0 :: 0:s 684.04/291.51 s :: 0:s -> 0:s 684.04/291.51 sel :: 0:s -> n__f:cons -> 0:s 684.04/291.51 activate :: n__f:cons -> n__f:cons 684.04/291.51 const :: n__f:cons 684.04/291.51 684.04/291.51 Rewrite Strategy: INNERMOST 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) 684.04/291.51 Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. 684.04/291.51 The constant constructors are abstracted as follows: 684.04/291.51 684.04/291.51 0 => 0 684.04/291.51 const => 0 684.04/291.51 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (10) 684.04/291.51 Obligation: 684.04/291.51 Complexity RNTS consisting of the following rules: 684.04/291.51 684.04/291.51 activate(z) -{ 1 }-> X :|: X >= 0, z = X 684.04/291.51 activate(z) -{ 1 }-> f(X) :|: z = 1 + X, X >= 0 684.04/291.51 f(z) -{ 1 }-> 1 + X :|: X >= 0, z = X 684.04/291.51 f(z) -{ 1 }-> 1 + X + (1 + g(X)) :|: X >= 0, z = X 684.04/291.51 g(z) -{ 1 }-> 1 + 0 :|: z = 0 684.04/291.51 g(z) -{ 1 }-> 1 + (1 + g(X)) :|: z = 1 + X, X >= 0 684.04/291.51 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 684.04/291.51 sel(z, z') -{ 2 }-> sel(X, Z) :|: Z >= 0, z = 1 + X, Y >= 0, X >= 0, z' = 1 + Y + Z 684.04/291.51 sel(z, z') -{ 2 }-> sel(X, f(X')) :|: z = 1 + X, Y >= 0, z' = 1 + Y + (1 + X'), X >= 0, X' >= 0 684.04/291.51 684.04/291.51 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (11) SimplificationProof (BOTH BOUNDS(ID, ID)) 684.04/291.51 Simplified the RNTS by moving equalities from the constraints into the right-hand sides. 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (12) 684.04/291.51 Obligation: 684.04/291.51 Complexity RNTS consisting of the following rules: 684.04/291.51 684.04/291.51 activate(z) -{ 1 }-> z :|: z >= 0 684.04/291.51 activate(z) -{ 1 }-> f(z - 1) :|: z - 1 >= 0 684.04/291.51 f(z) -{ 1 }-> 1 + z :|: z >= 0 684.04/291.51 f(z) -{ 1 }-> 1 + z + (1 + g(z)) :|: z >= 0 684.04/291.51 g(z) -{ 1 }-> 1 + 0 :|: z = 0 684.04/291.51 g(z) -{ 1 }-> 1 + (1 + g(z - 1)) :|: z - 1 >= 0 684.04/291.51 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 684.04/291.51 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z 684.04/291.51 sel(z, z') -{ 2 }-> sel(z - 1, f(X')) :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0 684.04/291.51 684.04/291.51 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (13) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) 684.04/291.51 Found the following analysis order by SCC decomposition: 684.04/291.51 684.04/291.51 { g } 684.04/291.51 { f } 684.04/291.51 { activate } 684.04/291.51 { sel } 684.04/291.51 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (14) 684.04/291.51 Obligation: 684.04/291.51 Complexity RNTS consisting of the following rules: 684.04/291.51 684.04/291.51 activate(z) -{ 1 }-> z :|: z >= 0 684.04/291.51 activate(z) -{ 1 }-> f(z - 1) :|: z - 1 >= 0 684.04/291.51 f(z) -{ 1 }-> 1 + z :|: z >= 0 684.04/291.51 f(z) -{ 1 }-> 1 + z + (1 + g(z)) :|: z >= 0 684.04/291.51 g(z) -{ 1 }-> 1 + 0 :|: z = 0 684.04/291.51 g(z) -{ 1 }-> 1 + (1 + g(z - 1)) :|: z - 1 >= 0 684.04/291.51 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 684.04/291.51 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z 684.04/291.51 sel(z, z') -{ 2 }-> sel(z - 1, f(X')) :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0 684.04/291.51 684.04/291.51 Function symbols to be analyzed: {g}, {f}, {activate}, {sel} 684.04/291.51 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (15) ResultPropagationProof (UPPER BOUND(ID)) 684.04/291.51 Applied inner abstraction using the recently inferred runtime/size bounds where possible. 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (16) 684.04/291.51 Obligation: 684.04/291.51 Complexity RNTS consisting of the following rules: 684.04/291.51 684.04/291.51 activate(z) -{ 1 }-> z :|: z >= 0 684.04/291.51 activate(z) -{ 1 }-> f(z - 1) :|: z - 1 >= 0 684.04/291.51 f(z) -{ 1 }-> 1 + z :|: z >= 0 684.04/291.51 f(z) -{ 1 }-> 1 + z + (1 + g(z)) :|: z >= 0 684.04/291.51 g(z) -{ 1 }-> 1 + 0 :|: z = 0 684.04/291.51 g(z) -{ 1 }-> 1 + (1 + g(z - 1)) :|: z - 1 >= 0 684.04/291.51 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 684.04/291.51 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z 684.04/291.51 sel(z, z') -{ 2 }-> sel(z - 1, f(X')) :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0 684.04/291.51 684.04/291.51 Function symbols to be analyzed: {g}, {f}, {activate}, {sel} 684.04/291.51 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (17) IntTrsBoundProof (UPPER BOUND(ID)) 684.04/291.51 684.04/291.51 Computed SIZE bound using CoFloCo for: g 684.04/291.51 after applying outer abstraction to obtain an ITS, 684.04/291.51 resulting in: O(n^1) with polynomial bound: 1 + 2*z 684.04/291.51 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (18) 684.04/291.51 Obligation: 684.04/291.51 Complexity RNTS consisting of the following rules: 684.04/291.51 684.04/291.51 activate(z) -{ 1 }-> z :|: z >= 0 684.04/291.51 activate(z) -{ 1 }-> f(z - 1) :|: z - 1 >= 0 684.04/291.51 f(z) -{ 1 }-> 1 + z :|: z >= 0 684.04/291.51 f(z) -{ 1 }-> 1 + z + (1 + g(z)) :|: z >= 0 684.04/291.51 g(z) -{ 1 }-> 1 + 0 :|: z = 0 684.04/291.51 g(z) -{ 1 }-> 1 + (1 + g(z - 1)) :|: z - 1 >= 0 684.04/291.51 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 684.04/291.51 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z 684.04/291.51 sel(z, z') -{ 2 }-> sel(z - 1, f(X')) :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0 684.04/291.51 684.04/291.51 Function symbols to be analyzed: {g}, {f}, {activate}, {sel} 684.04/291.51 Previous analysis results are: 684.04/291.51 g: runtime: ?, size: O(n^1) [1 + 2*z] 684.04/291.51 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (19) IntTrsBoundProof (UPPER BOUND(ID)) 684.04/291.51 684.04/291.51 Computed RUNTIME bound using CoFloCo for: g 684.04/291.51 after applying outer abstraction to obtain an ITS, 684.04/291.51 resulting in: O(n^1) with polynomial bound: 1 + z 684.04/291.51 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (20) 684.04/291.51 Obligation: 684.04/291.51 Complexity RNTS consisting of the following rules: 684.04/291.51 684.04/291.51 activate(z) -{ 1 }-> z :|: z >= 0 684.04/291.51 activate(z) -{ 1 }-> f(z - 1) :|: z - 1 >= 0 684.04/291.51 f(z) -{ 1 }-> 1 + z :|: z >= 0 684.04/291.51 f(z) -{ 1 }-> 1 + z + (1 + g(z)) :|: z >= 0 684.04/291.51 g(z) -{ 1 }-> 1 + 0 :|: z = 0 684.04/291.51 g(z) -{ 1 }-> 1 + (1 + g(z - 1)) :|: z - 1 >= 0 684.04/291.51 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 684.04/291.51 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z 684.04/291.51 sel(z, z') -{ 2 }-> sel(z - 1, f(X')) :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0 684.04/291.51 684.04/291.51 Function symbols to be analyzed: {f}, {activate}, {sel} 684.04/291.51 Previous analysis results are: 684.04/291.51 g: runtime: O(n^1) [1 + z], size: O(n^1) [1 + 2*z] 684.04/291.51 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (21) ResultPropagationProof (UPPER BOUND(ID)) 684.04/291.51 Applied inner abstraction using the recently inferred runtime/size bounds where possible. 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (22) 684.04/291.51 Obligation: 684.04/291.51 Complexity RNTS consisting of the following rules: 684.04/291.51 684.04/291.51 activate(z) -{ 1 }-> z :|: z >= 0 684.04/291.51 activate(z) -{ 1 }-> f(z - 1) :|: z - 1 >= 0 684.04/291.51 f(z) -{ 1 }-> 1 + z :|: z >= 0 684.04/291.51 f(z) -{ 2 + z }-> 1 + z + (1 + s) :|: s >= 0, s <= 2 * z + 1, z >= 0 684.04/291.51 g(z) -{ 1 }-> 1 + 0 :|: z = 0 684.04/291.51 g(z) -{ 1 + z }-> 1 + (1 + s') :|: s' >= 0, s' <= 2 * (z - 1) + 1, z - 1 >= 0 684.04/291.51 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 684.04/291.51 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z 684.04/291.51 sel(z, z') -{ 2 }-> sel(z - 1, f(X')) :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0 684.04/291.51 684.04/291.51 Function symbols to be analyzed: {f}, {activate}, {sel} 684.04/291.51 Previous analysis results are: 684.04/291.51 g: runtime: O(n^1) [1 + z], size: O(n^1) [1 + 2*z] 684.04/291.51 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (23) IntTrsBoundProof (UPPER BOUND(ID)) 684.04/291.51 684.04/291.51 Computed SIZE bound using CoFloCo for: f 684.04/291.51 after applying outer abstraction to obtain an ITS, 684.04/291.51 resulting in: O(n^1) with polynomial bound: 3 + 3*z 684.04/291.51 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (24) 684.04/291.51 Obligation: 684.04/291.51 Complexity RNTS consisting of the following rules: 684.04/291.51 684.04/291.51 activate(z) -{ 1 }-> z :|: z >= 0 684.04/291.51 activate(z) -{ 1 }-> f(z - 1) :|: z - 1 >= 0 684.04/291.51 f(z) -{ 1 }-> 1 + z :|: z >= 0 684.04/291.51 f(z) -{ 2 + z }-> 1 + z + (1 + s) :|: s >= 0, s <= 2 * z + 1, z >= 0 684.04/291.51 g(z) -{ 1 }-> 1 + 0 :|: z = 0 684.04/291.51 g(z) -{ 1 + z }-> 1 + (1 + s') :|: s' >= 0, s' <= 2 * (z - 1) + 1, z - 1 >= 0 684.04/291.51 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 684.04/291.51 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z 684.04/291.51 sel(z, z') -{ 2 }-> sel(z - 1, f(X')) :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0 684.04/291.51 684.04/291.51 Function symbols to be analyzed: {f}, {activate}, {sel} 684.04/291.51 Previous analysis results are: 684.04/291.51 g: runtime: O(n^1) [1 + z], size: O(n^1) [1 + 2*z] 684.04/291.51 f: runtime: ?, size: O(n^1) [3 + 3*z] 684.04/291.51 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (25) IntTrsBoundProof (UPPER BOUND(ID)) 684.04/291.51 684.04/291.51 Computed RUNTIME bound using CoFloCo for: f 684.04/291.51 after applying outer abstraction to obtain an ITS, 684.04/291.51 resulting in: O(n^1) with polynomial bound: 2 + z 684.04/291.51 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (26) 684.04/291.51 Obligation: 684.04/291.51 Complexity RNTS consisting of the following rules: 684.04/291.51 684.04/291.51 activate(z) -{ 1 }-> z :|: z >= 0 684.04/291.51 activate(z) -{ 1 }-> f(z - 1) :|: z - 1 >= 0 684.04/291.51 f(z) -{ 1 }-> 1 + z :|: z >= 0 684.04/291.51 f(z) -{ 2 + z }-> 1 + z + (1 + s) :|: s >= 0, s <= 2 * z + 1, z >= 0 684.04/291.51 g(z) -{ 1 }-> 1 + 0 :|: z = 0 684.04/291.51 g(z) -{ 1 + z }-> 1 + (1 + s') :|: s' >= 0, s' <= 2 * (z - 1) + 1, z - 1 >= 0 684.04/291.51 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 684.04/291.51 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z 684.04/291.51 sel(z, z') -{ 2 }-> sel(z - 1, f(X')) :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0 684.04/291.51 684.04/291.51 Function symbols to be analyzed: {activate}, {sel} 684.04/291.51 Previous analysis results are: 684.04/291.51 g: runtime: O(n^1) [1 + z], size: O(n^1) [1 + 2*z] 684.04/291.51 f: runtime: O(n^1) [2 + z], size: O(n^1) [3 + 3*z] 684.04/291.51 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (27) ResultPropagationProof (UPPER BOUND(ID)) 684.04/291.51 Applied inner abstraction using the recently inferred runtime/size bounds where possible. 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (28) 684.04/291.51 Obligation: 684.04/291.51 Complexity RNTS consisting of the following rules: 684.04/291.51 684.04/291.51 activate(z) -{ 2 + z }-> s1 :|: s1 >= 0, s1 <= 3 * (z - 1) + 3, z - 1 >= 0 684.04/291.51 activate(z) -{ 1 }-> z :|: z >= 0 684.04/291.51 f(z) -{ 1 }-> 1 + z :|: z >= 0 684.04/291.51 f(z) -{ 2 + z }-> 1 + z + (1 + s) :|: s >= 0, s <= 2 * z + 1, z >= 0 684.04/291.51 g(z) -{ 1 }-> 1 + 0 :|: z = 0 684.04/291.51 g(z) -{ 1 + z }-> 1 + (1 + s') :|: s' >= 0, s' <= 2 * (z - 1) + 1, z - 1 >= 0 684.04/291.51 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 684.04/291.51 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z 684.04/291.51 sel(z, z') -{ 4 + X' }-> sel(z - 1, s'') :|: s'' >= 0, s'' <= 3 * X' + 3, Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0 684.04/291.51 684.04/291.51 Function symbols to be analyzed: {activate}, {sel} 684.04/291.51 Previous analysis results are: 684.04/291.51 g: runtime: O(n^1) [1 + z], size: O(n^1) [1 + 2*z] 684.04/291.51 f: runtime: O(n^1) [2 + z], size: O(n^1) [3 + 3*z] 684.04/291.51 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (29) IntTrsBoundProof (UPPER BOUND(ID)) 684.04/291.51 684.04/291.51 Computed SIZE bound using CoFloCo for: activate 684.04/291.51 after applying outer abstraction to obtain an ITS, 684.04/291.51 resulting in: O(n^1) with polynomial bound: 3*z 684.04/291.51 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (30) 684.04/291.51 Obligation: 684.04/291.51 Complexity RNTS consisting of the following rules: 684.04/291.51 684.04/291.51 activate(z) -{ 2 + z }-> s1 :|: s1 >= 0, s1 <= 3 * (z - 1) + 3, z - 1 >= 0 684.04/291.51 activate(z) -{ 1 }-> z :|: z >= 0 684.04/291.51 f(z) -{ 1 }-> 1 + z :|: z >= 0 684.04/291.51 f(z) -{ 2 + z }-> 1 + z + (1 + s) :|: s >= 0, s <= 2 * z + 1, z >= 0 684.04/291.51 g(z) -{ 1 }-> 1 + 0 :|: z = 0 684.04/291.51 g(z) -{ 1 + z }-> 1 + (1 + s') :|: s' >= 0, s' <= 2 * (z - 1) + 1, z - 1 >= 0 684.04/291.51 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 684.04/291.51 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z 684.04/291.51 sel(z, z') -{ 4 + X' }-> sel(z - 1, s'') :|: s'' >= 0, s'' <= 3 * X' + 3, Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0 684.04/291.51 684.04/291.51 Function symbols to be analyzed: {activate}, {sel} 684.04/291.51 Previous analysis results are: 684.04/291.51 g: runtime: O(n^1) [1 + z], size: O(n^1) [1 + 2*z] 684.04/291.51 f: runtime: O(n^1) [2 + z], size: O(n^1) [3 + 3*z] 684.04/291.51 activate: runtime: ?, size: O(n^1) [3*z] 684.04/291.51 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (31) IntTrsBoundProof (UPPER BOUND(ID)) 684.04/291.51 684.04/291.51 Computed RUNTIME bound using CoFloCo for: activate 684.04/291.51 after applying outer abstraction to obtain an ITS, 684.04/291.51 resulting in: O(n^1) with polynomial bound: 2 + z 684.04/291.51 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (32) 684.04/291.51 Obligation: 684.04/291.51 Complexity RNTS consisting of the following rules: 684.04/291.51 684.04/291.51 activate(z) -{ 2 + z }-> s1 :|: s1 >= 0, s1 <= 3 * (z - 1) + 3, z - 1 >= 0 684.04/291.51 activate(z) -{ 1 }-> z :|: z >= 0 684.04/291.51 f(z) -{ 1 }-> 1 + z :|: z >= 0 684.04/291.51 f(z) -{ 2 + z }-> 1 + z + (1 + s) :|: s >= 0, s <= 2 * z + 1, z >= 0 684.04/291.51 g(z) -{ 1 }-> 1 + 0 :|: z = 0 684.04/291.51 g(z) -{ 1 + z }-> 1 + (1 + s') :|: s' >= 0, s' <= 2 * (z - 1) + 1, z - 1 >= 0 684.04/291.51 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 684.04/291.51 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z 684.04/291.51 sel(z, z') -{ 4 + X' }-> sel(z - 1, s'') :|: s'' >= 0, s'' <= 3 * X' + 3, Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0 684.04/291.51 684.04/291.51 Function symbols to be analyzed: {sel} 684.04/291.51 Previous analysis results are: 684.04/291.51 g: runtime: O(n^1) [1 + z], size: O(n^1) [1 + 2*z] 684.04/291.51 f: runtime: O(n^1) [2 + z], size: O(n^1) [3 + 3*z] 684.04/291.51 activate: runtime: O(n^1) [2 + z], size: O(n^1) [3*z] 684.04/291.51 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (33) ResultPropagationProof (UPPER BOUND(ID)) 684.04/291.51 Applied inner abstraction using the recently inferred runtime/size bounds where possible. 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (34) 684.04/291.51 Obligation: 684.04/291.51 Complexity RNTS consisting of the following rules: 684.04/291.51 684.04/291.51 activate(z) -{ 2 + z }-> s1 :|: s1 >= 0, s1 <= 3 * (z - 1) + 3, z - 1 >= 0 684.04/291.51 activate(z) -{ 1 }-> z :|: z >= 0 684.04/291.51 f(z) -{ 1 }-> 1 + z :|: z >= 0 684.04/291.51 f(z) -{ 2 + z }-> 1 + z + (1 + s) :|: s >= 0, s <= 2 * z + 1, z >= 0 684.04/291.51 g(z) -{ 1 }-> 1 + 0 :|: z = 0 684.04/291.51 g(z) -{ 1 + z }-> 1 + (1 + s') :|: s' >= 0, s' <= 2 * (z - 1) + 1, z - 1 >= 0 684.04/291.51 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 684.04/291.51 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z 684.04/291.51 sel(z, z') -{ 4 + X' }-> sel(z - 1, s'') :|: s'' >= 0, s'' <= 3 * X' + 3, Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0 684.04/291.51 684.04/291.51 Function symbols to be analyzed: {sel} 684.04/291.51 Previous analysis results are: 684.04/291.51 g: runtime: O(n^1) [1 + z], size: O(n^1) [1 + 2*z] 684.04/291.51 f: runtime: O(n^1) [2 + z], size: O(n^1) [3 + 3*z] 684.04/291.51 activate: runtime: O(n^1) [2 + z], size: O(n^1) [3*z] 684.04/291.51 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (35) IntTrsBoundProof (UPPER BOUND(ID)) 684.04/291.51 684.04/291.51 Computed SIZE bound using KoAT for: sel 684.04/291.51 after applying outer abstraction to obtain an ITS, 684.04/291.51 resulting in: EXP with polynomial bound: ? 684.04/291.51 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (36) 684.04/291.51 Obligation: 684.04/291.51 Complexity RNTS consisting of the following rules: 684.04/291.51 684.04/291.51 activate(z) -{ 2 + z }-> s1 :|: s1 >= 0, s1 <= 3 * (z - 1) + 3, z - 1 >= 0 684.04/291.51 activate(z) -{ 1 }-> z :|: z >= 0 684.04/291.51 f(z) -{ 1 }-> 1 + z :|: z >= 0 684.04/291.51 f(z) -{ 2 + z }-> 1 + z + (1 + s) :|: s >= 0, s <= 2 * z + 1, z >= 0 684.04/291.51 g(z) -{ 1 }-> 1 + 0 :|: z = 0 684.04/291.51 g(z) -{ 1 + z }-> 1 + (1 + s') :|: s' >= 0, s' <= 2 * (z - 1) + 1, z - 1 >= 0 684.04/291.51 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 684.04/291.51 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z 684.04/291.51 sel(z, z') -{ 4 + X' }-> sel(z - 1, s'') :|: s'' >= 0, s'' <= 3 * X' + 3, Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0 684.04/291.51 684.04/291.51 Function symbols to be analyzed: {sel} 684.04/291.51 Previous analysis results are: 684.04/291.51 g: runtime: O(n^1) [1 + z], size: O(n^1) [1 + 2*z] 684.04/291.51 f: runtime: O(n^1) [2 + z], size: O(n^1) [3 + 3*z] 684.04/291.51 activate: runtime: O(n^1) [2 + z], size: O(n^1) [3*z] 684.04/291.51 sel: runtime: ?, size: EXP 684.04/291.51 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (37) IntTrsBoundProof (UPPER BOUND(ID)) 684.04/291.51 684.04/291.51 Computed RUNTIME bound using KoAT for: sel 684.04/291.51 after applying outer abstraction to obtain an ITS, 684.04/291.51 resulting in: EXP with polynomial bound: ? 684.04/291.51 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (38) 684.04/291.51 Obligation: 684.04/291.51 Complexity RNTS consisting of the following rules: 684.04/291.51 684.04/291.51 activate(z) -{ 2 + z }-> s1 :|: s1 >= 0, s1 <= 3 * (z - 1) + 3, z - 1 >= 0 684.04/291.51 activate(z) -{ 1 }-> z :|: z >= 0 684.04/291.51 f(z) -{ 1 }-> 1 + z :|: z >= 0 684.04/291.51 f(z) -{ 2 + z }-> 1 + z + (1 + s) :|: s >= 0, s <= 2 * z + 1, z >= 0 684.04/291.51 g(z) -{ 1 }-> 1 + 0 :|: z = 0 684.04/291.51 g(z) -{ 1 + z }-> 1 + (1 + s') :|: s' >= 0, s' <= 2 * (z - 1) + 1, z - 1 >= 0 684.04/291.51 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 684.04/291.51 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z 684.04/291.51 sel(z, z') -{ 4 + X' }-> sel(z - 1, s'') :|: s'' >= 0, s'' <= 3 * X' + 3, Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0 684.04/291.51 684.04/291.51 Function symbols to be analyzed: 684.04/291.51 Previous analysis results are: 684.04/291.51 g: runtime: O(n^1) [1 + z], size: O(n^1) [1 + 2*z] 684.04/291.51 f: runtime: O(n^1) [2 + z], size: O(n^1) [3 + 3*z] 684.04/291.51 activate: runtime: O(n^1) [2 + z], size: O(n^1) [3*z] 684.04/291.51 sel: runtime: EXP, size: EXP 684.04/291.51 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (39) FinalProof (FINISHED) 684.04/291.51 Computed overall runtime complexity 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (40) 684.04/291.51 BOUNDS(1, EXP) 684.04/291.51 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (41) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 684.04/291.51 Transformed a relative TRS into a decreasing-loop problem. 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (42) 684.04/291.51 Obligation: 684.04/291.51 Analyzing the following TRS for decreasing loops: 684.04/291.51 684.04/291.51 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, EXP). 684.04/291.51 684.04/291.51 684.04/291.51 The TRS R consists of the following rules: 684.04/291.51 684.04/291.51 f(X) -> cons(X, n__f(g(X))) 684.04/291.51 g(0) -> s(0) 684.04/291.51 g(s(X)) -> s(s(g(X))) 684.04/291.51 sel(0, cons(X, Y)) -> X 684.04/291.51 sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) 684.04/291.51 f(X) -> n__f(X) 684.04/291.51 activate(n__f(X)) -> f(X) 684.04/291.51 activate(X) -> X 684.04/291.51 684.04/291.51 S is empty. 684.04/291.51 Rewrite Strategy: INNERMOST 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (43) DecreasingLoopProof (LOWER BOUND(ID)) 684.04/291.51 The following loop(s) give(s) rise to the lower bound Omega(n^1): 684.04/291.51 684.04/291.51 The rewrite sequence 684.04/291.51 684.04/291.51 g(s(X)) ->^+ s(s(g(X))) 684.04/291.51 684.04/291.51 gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0]. 684.04/291.51 684.04/291.51 The pumping substitution is [X / s(X)]. 684.04/291.51 684.04/291.51 The result substitution is [ ]. 684.04/291.51 684.04/291.51 684.04/291.51 684.04/291.51 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (44) 684.04/291.51 Complex Obligation (BEST) 684.04/291.51 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (45) 684.04/291.51 Obligation: 684.04/291.51 Proved the lower bound n^1 for the following obligation: 684.04/291.51 684.04/291.51 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, EXP). 684.04/291.51 684.04/291.51 684.04/291.51 The TRS R consists of the following rules: 684.04/291.51 684.04/291.51 f(X) -> cons(X, n__f(g(X))) 684.04/291.51 g(0) -> s(0) 684.04/291.51 g(s(X)) -> s(s(g(X))) 684.04/291.51 sel(0, cons(X, Y)) -> X 684.04/291.51 sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) 684.04/291.51 f(X) -> n__f(X) 684.04/291.51 activate(n__f(X)) -> f(X) 684.04/291.51 activate(X) -> X 684.04/291.51 684.04/291.51 S is empty. 684.04/291.51 Rewrite Strategy: INNERMOST 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (46) LowerBoundPropagationProof (FINISHED) 684.04/291.51 Propagated lower bound. 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (47) 684.04/291.51 BOUNDS(n^1, INF) 684.04/291.51 684.04/291.51 ---------------------------------------- 684.04/291.51 684.04/291.51 (48) 684.04/291.51 Obligation: 684.04/291.51 Analyzing the following TRS for decreasing loops: 684.04/291.51 684.04/291.51 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, EXP). 684.04/291.51 684.04/291.51 684.04/291.51 The TRS R consists of the following rules: 684.04/291.51 684.04/291.51 f(X) -> cons(X, n__f(g(X))) 684.04/291.51 g(0) -> s(0) 684.04/291.51 g(s(X)) -> s(s(g(X))) 684.04/291.51 sel(0, cons(X, Y)) -> X 684.04/291.51 sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) 684.04/291.51 f(X) -> n__f(X) 684.04/291.51 activate(n__f(X)) -> f(X) 684.04/291.51 activate(X) -> X 684.04/291.51 684.04/291.51 S is empty. 684.04/291.51 Rewrite Strategy: INNERMOST 684.04/291.56 EOF