3.97/1.80 WORST_CASE(Omega(n^1), O(n^1)) 3.97/1.81 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 3.97/1.81 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.97/1.81 3.97/1.81 3.97/1.81 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.97/1.81 3.97/1.81 (0) CpxTRS 3.97/1.81 (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] 3.97/1.81 (2) CpxTRS 3.97/1.81 (3) CpxTrsMatchBoundsTAProof [FINISHED, 97 ms] 3.97/1.81 (4) BOUNDS(1, n^1) 3.97/1.81 (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.97/1.81 (6) TRS for Loop Detection 3.97/1.81 (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.97/1.81 (8) BEST 3.97/1.81 (9) proven lower bound 3.97/1.81 (10) LowerBoundPropagationProof [FINISHED, 0 ms] 3.97/1.81 (11) BOUNDS(n^1, INF) 3.97/1.81 (12) TRS for Loop Detection 3.97/1.81 3.97/1.81 3.97/1.81 ---------------------------------------- 3.97/1.81 3.97/1.81 (0) 3.97/1.81 Obligation: 3.97/1.81 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.97/1.81 3.97/1.81 3.97/1.81 The TRS R consists of the following rules: 3.97/1.81 3.97/1.81 a__zeros -> cons(0, zeros) 3.97/1.81 a__tail(cons(X, XS)) -> mark(XS) 3.97/1.81 mark(zeros) -> a__zeros 3.97/1.81 mark(tail(X)) -> a__tail(mark(X)) 3.97/1.81 mark(cons(X1, X2)) -> cons(mark(X1), X2) 3.97/1.81 mark(0) -> 0 3.97/1.81 a__zeros -> zeros 3.97/1.81 a__tail(X) -> tail(X) 3.97/1.81 3.97/1.81 S is empty. 3.97/1.81 Rewrite Strategy: INNERMOST 3.97/1.81 ---------------------------------------- 3.97/1.81 3.97/1.81 (1) RelTrsToTrsProof (UPPER BOUND(ID)) 3.97/1.81 transformed relative TRS to TRS 3.97/1.81 ---------------------------------------- 3.97/1.81 3.97/1.81 (2) 3.97/1.81 Obligation: 3.97/1.81 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). 3.97/1.81 3.97/1.81 3.97/1.81 The TRS R consists of the following rules: 3.97/1.81 3.97/1.81 a__zeros -> cons(0, zeros) 3.97/1.81 a__tail(cons(X, XS)) -> mark(XS) 3.97/1.81 mark(zeros) -> a__zeros 3.97/1.81 mark(tail(X)) -> a__tail(mark(X)) 3.97/1.81 mark(cons(X1, X2)) -> cons(mark(X1), X2) 3.97/1.81 mark(0) -> 0 3.97/1.81 a__zeros -> zeros 3.97/1.81 a__tail(X) -> tail(X) 3.97/1.81 3.97/1.81 S is empty. 3.97/1.81 Rewrite Strategy: INNERMOST 3.97/1.81 ---------------------------------------- 3.97/1.81 3.97/1.81 (3) CpxTrsMatchBoundsTAProof (FINISHED) 3.97/1.81 A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 4. 3.97/1.81 3.97/1.81 The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: 3.97/1.81 final states : [1, 2, 3] 3.97/1.81 transitions: 3.97/1.81 cons0(0, 0) -> 0 3.97/1.81 00() -> 0 3.97/1.81 zeros0() -> 0 3.97/1.81 tail0(0) -> 0 3.97/1.81 a__zeros0() -> 1 3.97/1.81 a__tail0(0) -> 2 3.97/1.81 mark0(0) -> 3 3.97/1.81 01() -> 4 3.97/1.81 zeros1() -> 5 3.97/1.81 cons1(4, 5) -> 1 3.97/1.81 mark1(0) -> 2 3.97/1.81 a__zeros1() -> 3 3.97/1.81 mark1(0) -> 6 3.97/1.81 a__tail1(6) -> 3 3.97/1.81 mark1(0) -> 7 3.97/1.81 cons1(7, 0) -> 3 3.97/1.81 01() -> 3 3.97/1.81 zeros1() -> 1 3.97/1.81 tail1(0) -> 2 3.97/1.81 02() -> 8 3.97/1.81 zeros2() -> 9 3.97/1.81 cons2(8, 9) -> 3 3.97/1.81 a__zeros1() -> 2 3.97/1.81 a__zeros1() -> 6 3.97/1.81 a__zeros1() -> 7 3.97/1.81 a__tail1(6) -> 2 3.97/1.81 a__tail1(6) -> 6 3.97/1.81 a__tail1(6) -> 7 3.97/1.81 cons1(7, 0) -> 2 3.97/1.81 cons1(7, 0) -> 6 3.97/1.81 cons1(7, 0) -> 7 3.97/1.81 01() -> 2 3.97/1.81 01() -> 6 3.97/1.81 01() -> 7 3.97/1.81 zeros2() -> 3 3.97/1.81 tail2(6) -> 3 3.97/1.81 cons2(8, 9) -> 2 3.97/1.81 cons2(8, 9) -> 6 3.97/1.81 cons2(8, 9) -> 7 3.97/1.81 mark2(0) -> 2 3.97/1.81 mark2(0) -> 3 3.97/1.81 mark2(0) -> 6 3.97/1.81 mark2(0) -> 7 3.97/1.81 zeros2() -> 2 3.97/1.81 zeros2() -> 6 3.97/1.81 zeros2() -> 7 3.97/1.81 tail2(6) -> 2 3.97/1.81 tail2(6) -> 6 3.97/1.81 tail2(6) -> 7 3.97/1.81 mark2(9) -> 2 3.97/1.81 mark2(9) -> 3 3.97/1.81 mark2(9) -> 6 3.97/1.81 mark2(9) -> 7 3.97/1.81 a__zeros3() -> 2 3.97/1.81 a__zeros3() -> 3 3.97/1.81 a__zeros3() -> 6 3.97/1.81 a__zeros3() -> 7 3.97/1.81 04() -> 10 3.97/1.81 zeros4() -> 11 3.97/1.81 cons4(10, 11) -> 2 3.97/1.81 cons4(10, 11) -> 3 3.97/1.81 cons4(10, 11) -> 6 3.97/1.81 cons4(10, 11) -> 7 3.97/1.81 zeros4() -> 2 3.97/1.81 zeros4() -> 3 3.97/1.81 zeros4() -> 6 3.97/1.81 zeros4() -> 7 3.97/1.81 mark2(11) -> 2 3.97/1.81 mark2(11) -> 3 3.97/1.81 mark2(11) -> 6 3.97/1.81 mark2(11) -> 7 3.97/1.81 3.97/1.81 ---------------------------------------- 3.97/1.81 3.97/1.81 (4) 3.97/1.81 BOUNDS(1, n^1) 3.97/1.81 3.97/1.81 ---------------------------------------- 3.97/1.81 3.97/1.81 (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.97/1.81 Transformed a relative TRS into a decreasing-loop problem. 3.97/1.81 ---------------------------------------- 3.97/1.81 3.97/1.81 (6) 3.97/1.81 Obligation: 3.97/1.81 Analyzing the following TRS for decreasing loops: 3.97/1.81 3.97/1.81 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.97/1.81 3.97/1.81 3.97/1.81 The TRS R consists of the following rules: 3.97/1.81 3.97/1.81 a__zeros -> cons(0, zeros) 3.97/1.81 a__tail(cons(X, XS)) -> mark(XS) 3.97/1.81 mark(zeros) -> a__zeros 3.97/1.81 mark(tail(X)) -> a__tail(mark(X)) 3.97/1.81 mark(cons(X1, X2)) -> cons(mark(X1), X2) 3.97/1.81 mark(0) -> 0 3.97/1.81 a__zeros -> zeros 3.97/1.81 a__tail(X) -> tail(X) 3.97/1.81 3.97/1.81 S is empty. 3.97/1.81 Rewrite Strategy: INNERMOST 3.97/1.81 ---------------------------------------- 3.97/1.81 3.97/1.81 (7) DecreasingLoopProof (LOWER BOUND(ID)) 3.97/1.81 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.97/1.81 3.97/1.81 The rewrite sequence 3.97/1.81 3.97/1.81 mark(tail(X)) ->^+ a__tail(mark(X)) 3.97/1.81 3.97/1.81 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.97/1.81 3.97/1.81 The pumping substitution is [X / tail(X)]. 3.97/1.81 3.97/1.81 The result substitution is [ ]. 3.97/1.81 3.97/1.81 3.97/1.81 3.97/1.81 3.97/1.81 ---------------------------------------- 3.97/1.81 3.97/1.81 (8) 3.97/1.81 Complex Obligation (BEST) 3.97/1.81 3.97/1.81 ---------------------------------------- 3.97/1.81 3.97/1.81 (9) 3.97/1.81 Obligation: 3.97/1.81 Proved the lower bound n^1 for the following obligation: 3.97/1.81 3.97/1.81 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.97/1.81 3.97/1.81 3.97/1.81 The TRS R consists of the following rules: 3.97/1.81 3.97/1.81 a__zeros -> cons(0, zeros) 3.97/1.81 a__tail(cons(X, XS)) -> mark(XS) 3.97/1.81 mark(zeros) -> a__zeros 3.97/1.81 mark(tail(X)) -> a__tail(mark(X)) 3.97/1.81 mark(cons(X1, X2)) -> cons(mark(X1), X2) 3.97/1.81 mark(0) -> 0 3.97/1.81 a__zeros -> zeros 3.97/1.81 a__tail(X) -> tail(X) 3.97/1.81 3.97/1.81 S is empty. 3.97/1.81 Rewrite Strategy: INNERMOST 3.97/1.81 ---------------------------------------- 3.97/1.81 3.97/1.81 (10) LowerBoundPropagationProof (FINISHED) 3.97/1.81 Propagated lower bound. 3.97/1.81 ---------------------------------------- 3.97/1.81 3.97/1.81 (11) 3.97/1.81 BOUNDS(n^1, INF) 3.97/1.81 3.97/1.81 ---------------------------------------- 3.97/1.81 3.97/1.81 (12) 3.97/1.81 Obligation: 3.97/1.81 Analyzing the following TRS for decreasing loops: 3.97/1.81 3.97/1.81 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.97/1.81 3.97/1.81 3.97/1.81 The TRS R consists of the following rules: 3.97/1.81 3.97/1.81 a__zeros -> cons(0, zeros) 3.97/1.81 a__tail(cons(X, XS)) -> mark(XS) 3.97/1.81 mark(zeros) -> a__zeros 3.97/1.81 mark(tail(X)) -> a__tail(mark(X)) 3.97/1.81 mark(cons(X1, X2)) -> cons(mark(X1), X2) 3.97/1.81 mark(0) -> 0 3.97/1.81 a__zeros -> zeros 3.97/1.81 a__tail(X) -> tail(X) 3.97/1.81 3.97/1.81 S is empty. 3.97/1.81 Rewrite Strategy: INNERMOST 3.97/1.85 EOF